CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced photoluminescence of monolayer MoS2 on stepped gold structure |
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星)† |
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract Different MoS2/Au heterostructures can play an important role in tuning the photoluminescence (PL) and optoelectrical properties of monolayer MoS2. Previous studies of PL of MoS2/Au heterostructures were mainly limited to the PL enhancement by using different Au nanostructures and PL quenching of monolayer MoS2 on flat Au surfaces. Here, we demonstrate the enhanced excitonic PL emissions of monolayer MoS2/Au heterostructures on Si/SiO2 substrates. By transferring the continuous monolayer MoS2 onto a stepped Au structure consisting of 60-nm and 100-nm Au films, the MoS2/Au-60 and MoS2/Au-100 heterostructures exhibit enhanced PL emissions, each with a blue-shifted PL peak in comparison with the MoS2/SiO2. Furthermore, the PL intensity of MoS2/Au-60 is about twice larger than that of MoS2/Au-100. The different enhanced excitonic PL emissions in MoS2/Au heterostructures can be attributed to the different charge transfer effects modified by the stepped Au structure. This work may provide an insight into the excitonic PL and charge transfer effect of MoS2 on Au film and yield novel phenomena in MoS2/Au heterostructures for further study of PL tuning and optoelectrical properties.
|
Received: 09 February 2022
Revised: 05 April 2022
Accepted manuscript online: 08 April 2022
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
71.35.Pq
|
(Charged excitons (trions))
|
|
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M671168) and the National Natural Science Foundation of China (Grant No. 62075131). |
Corresponding Authors:
Fu-Xing Gu
E-mail: gufuxing@usst.edu.cn
|
Cite this article:
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星) Enhanced photoluminescence of monolayer MoS2 on stepped gold structure 2022 Chin. Phys. B 31 087803
|
[1] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D and Zhang G 2020 Nat. Electron. 3 711 [2] Mouloua D, Kotbi A, Deokar G, Kaja K, Marssi M E, Khakani M A E and Jouiad M 2021 Materials 14 3283 [3] Liu Y C and Gu F X 2021 Nanoscale Adv. 3 2117 [4] Mouri S, Miyauchi Y and Matsuda K 2016 Appl. Phys. Express 9 055202 [5] Su H, Wu S, Yang Y, Leng Q, Huang L, Fu J, Wang Q, Liu H and Zhou L 2021 Nanophotonics 10 975 [6] Liao F, Yu J, Gu Z, Yang Z, Hasan T, Linghu S, Peng J, Fang W, Zhuang S, Gu M and Gu F 2019 Sci. Adv. 5 eaax7398 [7] Luo Y, Shan H, Gao X, Qi P, Li Y, Li B, Rong X, Shen B, Zhang H, Lin F, Tang Z and Fang Z 2020 Nanoscale Horiz. 5 971 [8] Shen T, Li F, Zhang Z, Xu L and Qi J 2020 ACS Appl. Mater. Interfaces 12 54927 [9] Cao S, Hou L, Wang Q, Li C, Yu W, Gan X, Liu K, Premaratne M, Xiao F and Zhao J 2021 Photon. Res. 9 501 [10] Wang Z, Liu J, Fang X, Wang J, Yin Z, He H, Jiang S, Zhao M, Yin Z, Luo D, Shum P and Liu Y J 2021 Nanophotonics 10 1733 [11] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302 [12] Garai M, Zhu Z, Shi J, Li S and Xu Q H 2021 J. Chem. Phys. 155 234201 [13] Kim E, Lee C, Song J, Kwon S, Kim B, Kim D H, Park T J, Jeong M S and Kim D W 2020 J. Phys. Chem. Lett. 11 3039 [14] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302 [15] Holmi J T, Raju R, Ylönen J, Subramaniyam N and Lipsanen H 2021 Superlattice Microst. 160 107077 [16] Yang Y, Liu W G, Lin Z T, Pan R H, Gu C Z and Li J J 2021 Mater. Today Phys. 17 100343 [17] Shan H, Yu Y, Wang X, Luo Y, Zu S, Du B, Han T, Li B, Li Y, Wu J, Lin F, Shi K, Tay B K, Liu Z, Zhu X and Fang Z 2019 Light Sci. Appl. 8 9 [18] Bhanu U, Islam M. Tetard L and Khondaker S I 2014 Sci. Rep. 4 5575 [19] Pollmann E, Sleziona S, Foller T, Hagemann U, Gorynski C, Petri O, Madauß L, Breuer L and Schleberger M 2021 ACS Omega 6 15929 [20] Zhang L, Yan H, Sun X, Dong M, Yildirim T, Wang B, Wen B, Neupane G P, Sharma A, Zhu Y, Zhang J, Liang K, Liu B, Nguyen H T, Macdonald D and Lu Y 2019 Nanoscale 11 418 [21] Shen T, Lu X, Xu L, Li Z and Qi J 2020 Nanosci. Nanotech. Lett. 12 141 [22] Velický M, Rodriguez A, Bouša M, Krayev A V, ondráček M, Honolka J, Ahmadi M, Donnelly G E, Huang F, Abruña H D, Novoselov K S and Frank O 2020 J. Phys. Chem. Lett. 11 6112 [23] Jeong H Y, Kim U J, Kim H, Han G H, Lee H, Kim M S, Jin Y, Ly T H, Lee S Y, Roh Y G, Joo W J, Hwang S W, Park Y and Lee Y H 2016 ACS Nano 10 8192 [24] Chen X, Zang J, Yang X, Zhang Y, Chen Y, Zhao Y, Dong L and Shan C X 2022 Sci. China-Mater. 65 1861 [25] Wang S, Xu Y and Liu Y 2020 Acta Photon. Sin. 49 0316002 [26] Li Y, Qi Z, Liu M, Wang Y, Cheng X, Zhang G and Sheng L 2014 Nanoscale 6 15248 [27] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944 [28] Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C and Zheng X L 2015 Nat. Commun. 6 7381 [29] Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V and Sood A K 2012 Phys. Rev. B:Condens. Matter Mater. Phys. 85 161403 [30] Buscema M, Steele G A, Zant H S J and Castellanos-Gomez A 2014 Nano Res. 7 561 [31] Ochedowski O, Marinov K, Scheuschner N, Poloczek A, Bussmann B K, Maultzsch J and Schleberger M 2014 Beilstein J. Nanotechnol. 5 291 [32] Yang L, Cui X, Zhang J, Wang K, Shen M, Zeng S, Dayeh S A, Feng L and Xiang B 2014 Sci. Rep. 4 5649 [33] Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C and Zheng X L 2015 Nat. Commun. 6 7381 [34] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836 [35] Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O and Kolosov O V 2015 2D Mater. 2 015005 [36] Kwon S, Kwon M H, Song J, Kim E, Kim Y, Kim B R, Hyun J K, Lee S W and Kim D W. 2019 Sci. Rep. 9 14434 [37] Li F, Qi J, Xu M, Xiao J, Xu Y, Zhang X, Liu S and Zhang Y 2017 Small 13 1603103 [38] Markeev P A, Najafidehaghani E, Gan Z, Sotthewes K, George A, Turchanin A and Jong M P 2021 J. Phys. Chem. C 125 13551 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|