Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047802    DOI: 10.1088/1674-1056/24/4/047802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Abnormal ionization in sonoluminescence

Zhang Wen-Juan (张文娟)a b, An Yu (安宇)a
a Department of Physics, Tsinghua University, Beijing 100084, China;
b High School Affiliated to Shanghai Jiao Tong University (Jia Ding Campus), Shanghai 201821, China
Abstract  

Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models.

Keywords:  sonoluminescence      ionization      ionized gas  
Received:  08 September 2014      Revised:  10 October 2014      Accepted manuscript online: 
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  52.25.Jm (Ionization of plasmas)  
  34.50.Gb (Electronic excitation and ionization of molecules)  
Fund: 

Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

Corresponding Authors:  An Yu     E-mail:  anyuw@mail.tsinghua.edu.cn

Cite this article: 

Zhang Wen-Juan (张文娟), An Yu (安宇) Abnormal ionization in sonoluminescence 2015 Chin. Phys. B 24 047802

[1] Gaitan D F, Crum L A, Church C C and Roy R 1992 J. Acoust. Soc. Am. 91 3166
[2] Barber B P and Putterman S J 1991 Nature 352 318
[3] Rayleigh L 1917 Philos. Mag. 34 94
[4] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[5] Lohse D, Brenner M P, Dupont T F, et al. 1997 Phys. Rev. Lett. 78 1359
[6] Hilgenfeldt S, Lohse D and Brenner M P 1996 Phys. Fluids 8 2808
[7] An Y, Lu T and Yang B 2005 Phys. Rev. E 71 026310
[8] Vuong V Q and Szeri A J 1996 Phys. Fluids 8 2354
[9] An Y and Ying C F 2005 Phys. Rev. E 71 036308
[10] Moss W C, Young D A, Harte J A, Levatin J L, Rozsnyai B F, Zimmerman G B and Zimmerman I H 1999 Phys. Rev. E 59 2986
[11] Toegel R, Gompf B, Pecha R and Lohse D 2000 Phys. Rev. Lett. 85 3165
[12] Yasui K 1997 Phys. Rev. E 56 6750
[13] Storey B D and Szeri A J 2000 Proc. R. Soc. London, Ser. A 456 1685
[14] An Y 2006 Phys. Rev. E 74 026304
[15] Hilgenfeldt S, Grossmann S and Lohse D 1999 Nature 398 402
[16] Hammer D and Frommhold L 2002 Phys. Rev. E 65 046309
[17] An Y and Li C 2008 Phys. Rev. E 78 046313
[18] An Y and Li C 2009 Phys. Rev. E 80 046320
[19] Li C and An Y 2009 Sci. China, Ser. G 52 593
[20] An Y and Zhang W J 2012 Chin. Phys. B 21 017806
[21] Kappus B, Khalid S, Chakravarty A, and Putterman S 2011 Phys. Rev. Lett. 106 234302
[22] Khalid S, Kappus B, Weninger K and Putterman S 2012 Phys. Rev. Lett. 108 104302
[23] Yasui K 2001 Phys. Rev. E 64 016310
[24] Ralchenko Y, Kramida A E, J. Reader and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3.1.5) online: http://physics.nist.gov/asd3
[25] More R M 1982 J. Quant. Spectrosc. Radiat. Transfer 27 345
[26] Zimmerman G B and More R M 1980 J. Quant. Spectrosc. Radiat. Transfer 23 517
[27] Fyrillas M M and Szeri A J 1994 J. Fluid Mech. 277 381
[28] Hiller R A, Putterman S J and Weninger K R 1998 Phys. Rev. Lett. 80 1090
[29] Barber B P, Hiller R A, Lofstedt R, Putterman S J and Weninger K R 1997 Phys. Rep. 281 65
[1] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[4] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[5] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[6] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[7] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[8] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[9] Ultrafast dynamics of cationic electronic states of vinyl bromide by strong-field ionization-photofragmentation
Long-Xing Zhou(周龙兴), Yang Liu(刘洋), Shen He(贺屾), Da-Shuai Gao(高大帅), Xing-Chen Shen(沈星晨), Qi Chen(陈淇), Tao Yu(于涛), Hang Lv(吕航), and Hai-Feng Xu(徐海峰). Chin. Phys. B, 2022, 31(2): 028202.
[10] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[11] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[12] Influence of Coulomb force between two electrons on double ionization of He-like atoms
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛). Chin. Phys. B, 2022, 31(1): 013202.
[13] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[14] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[15] X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2021, 30(8): 083201.
No Suggested Reading articles found!