Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044203    DOI: 10.1088/1674-1056/ac248e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells

Humberto Noverola-Gamas1,†, Luis Manuel Gaggero-Sager2, and Outmane Oubram3
1 División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez Km. 1 Col. La Esmeralda, Cunduacán, 8660, Mexico;
2 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, 62209, México;
3 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, 62209, México
Abstract  The effects of the interlayer distance on the nonlinear optical properties of n-type quadruple δ-doped GaAs quantum well were theoretically investigated. Particularly, the absorption coefficient and the relative refraction index change were determined. In the effective mass approach and within the framework of the Thomas-Fermi theory, the Schrödinger equation was resolved. Thereby, the subband energy levels and their respective wave functions were calculated. The variations in the nonlinear optical properties were determined by using the density matrix solutions. The achieved results demonstrate that the interlayer distance causes optical red-shift on nonlinear optical properties. Therefore, it can be deduced that the suitably chosen interlayer distance can be used to tune optical properties within the infrared spectrum region in optoelectronic devices such as far-infrared photo-detectors, high-speed electronic-optical modulators, and infrared lasers.
Keywords:  delta-doping      n-type GaAs layers      electronic structure      non-linear optical properties  
Received:  24 June 2021      Revised:  06 September 2021      Accepted manuscript online:  08 September 2021
PACS:  42.65.-k (Nonlinear optics)  
  64.70.Tg (Quantum phase transitions)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Corresponding Authors:  Humberto Noverola-Gamas     E-mail:  noverola86@gmail.com

Cite this article: 

Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells 2022 Chin. Phys. B 31 044203

[1] Ziat Y, Zarhri Z, Hammi M, Laghlimi C and Moutcine A 2020 Computo. Condens. Matter 25 502
[2] Zarhri Z, Houmad M, Ziat Y, Rhazouani O E, Slassi A, Benyoussef A and Kenz A 2016 J. Magn. Magn. Mater 406 212
[3] Zarhri Z, Ziat Y, Rhazouani O E, Benyoussef A and Elkenz A 2016 J. Phys. Chem. Solids 94 12
[4] Zhu C and Yu T 2020 Chin. Phys. B 29 096101
[5] Li Y, Xu P, Zhang X and Liu G 2020 Chin. Phys. B 29 087101
[6] Seifert G, Porezag D and Frauenheim T 1996 Int. J. Quantum Chem. 58 185
[7] Gaggero-Sager L M, Naumis G, Mu noz-Hernandez M A and Montiel-Palma V 2019 Physica B 405 4267
[8] Grimalsky V, Gaggero-Sager L M and Koshevaya S 2011 Physica B 406 2218
[9] Ozturk E 2016 Opt. Quant. Electron. 48 269
[10] Pryor C E and Pistol M E 2005 Phys. Rev. B 72 205311
[11] Rojas-Briseño J G, Del Río-De Santiago A, Mora-Ramos M E and Martínez-Orozco J C 2020 Optik 201 163431
[12] Rodríguez-Magdaleno K, Mora-Ramos M E, Pérez-álvarez R and Martínez-Orozco J C 2020 Mat. Sci. Semicon. Proc. 108 104906
[13] Yang X C and Xing Y 2020 Chin. Phys. B 29 087802
[14] Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Suf. Sci. 537 75
[15] Ungan F, Mora-Ramos M E, Kasapoglu E, Sari H and Sökmen I 2018 Philos. Mag. 99 644
[16] Wood C E, Metze G and Eastman L F 1980 J. Appl. Phys. 51 383
[17] Gossmann H J, Unterwald F C and Luftman H S 1993 J. Appl. Phys. 73 8237
[18] Arpapay B, Duygulu Ö and Serincan U 2020 Mat. Sci. Semicon. Proc. 111 104990
[19] Ploog K 1987 J. Cryst. Growth 81 304
[20] Durmuslar A S, Mora-Ramos M E and Ungan F 2020 Opt. Quant. Electron. 52 495
[21] Sahoo N, Sahu A K and Palo S K 2021 Physica B 608 412798
[22] Salazar-Santa J D, Mora-Ramos M E and Marín J H 2020 Philos. Mag. 101 689
[23] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2020 Phys. Scr. 95 095813
[24] Ozturk E and Ozdemir Y 2013 Opt. Commun. 294 361
[25] Martínez-Orozcom J C, Rodríguez-Magdaleno K A, Suárez-López J R, Duque C A and Restrepo R L 2016 Superlattice Microst. 92 166
[26] Wang Y, Hamers R J and Kaxiras E 1995 Phys. Rev. Lett. 74 403
[27] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Int. J. Mod. Phys. B 33 1950215
[28] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Chin. Phys. B 28 124207
[29] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2020 Eur. Phys. J. B 93 18
[30] Dakhlaoui H, Ungan F, Martínez-Orozco J C and Mora-Ramos M E 2021 Physica B 607 412782
[31] Ahn D and Chuang S 1987 IEEE J. Quantum Elect. 23 2196
[32] Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010
[33] Ioratti L 1990 Phys. Rev. B 41 8340
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[10] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[13] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[14] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[15] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
No Suggested Reading articles found!