ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells |
Humberto Noverola-Gamas1,†, Luis Manuel Gaggero-Sager2, and Outmane Oubram3 |
1 División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez Km. 1 Col. La Esmeralda, Cunduacán, 8660, Mexico; 2 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, 62209, México; 3 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, Cuernavaca, 62209, México |
|
|
Abstract The effects of the interlayer distance on the nonlinear optical properties of n-type quadruple δ-doped GaAs quantum well were theoretically investigated. Particularly, the absorption coefficient and the relative refraction index change were determined. In the effective mass approach and within the framework of the Thomas-Fermi theory, the Schrödinger equation was resolved. Thereby, the subband energy levels and their respective wave functions were calculated. The variations in the nonlinear optical properties were determined by using the density matrix solutions. The achieved results demonstrate that the interlayer distance causes optical red-shift on nonlinear optical properties. Therefore, it can be deduced that the suitably chosen interlayer distance can be used to tune optical properties within the infrared spectrum region in optoelectronic devices such as far-infrared photo-detectors, high-speed electronic-optical modulators, and infrared lasers.
|
Received: 24 June 2021
Revised: 06 September 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Corresponding Authors:
Humberto Noverola-Gamas
E-mail: noverola86@gmail.com
|
Cite this article:
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells 2022 Chin. Phys. B 31 044203
|
[1] Ziat Y, Zarhri Z, Hammi M, Laghlimi C and Moutcine A 2020 Computo. Condens. Matter 25 502 [2] Zarhri Z, Houmad M, Ziat Y, Rhazouani O E, Slassi A, Benyoussef A and Kenz A 2016 J. Magn. Magn. Mater 406 212 [3] Zarhri Z, Ziat Y, Rhazouani O E, Benyoussef A and Elkenz A 2016 J. Phys. Chem. Solids 94 12 [4] Zhu C and Yu T 2020 Chin. Phys. B 29 096101 [5] Li Y, Xu P, Zhang X and Liu G 2020 Chin. Phys. B 29 087101 [6] Seifert G, Porezag D and Frauenheim T 1996 Int. J. Quantum Chem. 58 185 [7] Gaggero-Sager L M, Naumis G, Mu noz-Hernandez M A and Montiel-Palma V 2019 Physica B 405 4267 [8] Grimalsky V, Gaggero-Sager L M and Koshevaya S 2011 Physica B 406 2218 [9] Ozturk E 2016 Opt. Quant. Electron. 48 269 [10] Pryor C E and Pistol M E 2005 Phys. Rev. B 72 205311 [11] Rojas-Briseño J G, Del Río-De Santiago A, Mora-Ramos M E and Martínez-Orozco J C 2020 Optik 201 163431 [12] Rodríguez-Magdaleno K, Mora-Ramos M E, Pérez-álvarez R and Martínez-Orozco J C 2020 Mat. Sci. Semicon. Proc. 108 104906 [13] Yang X C and Xing Y 2020 Chin. Phys. B 29 087802 [14] Rodríguez-Vargas I, Gaggero-Sager L M and Velasco V R 2003 Suf. Sci. 537 75 [15] Ungan F, Mora-Ramos M E, Kasapoglu E, Sari H and Sökmen I 2018 Philos. Mag. 99 644 [16] Wood C E, Metze G and Eastman L F 1980 J. Appl. Phys. 51 383 [17] Gossmann H J, Unterwald F C and Luftman H S 1993 J. Appl. Phys. 73 8237 [18] Arpapay B, Duygulu Ö and Serincan U 2020 Mat. Sci. Semicon. Proc. 111 104990 [19] Ploog K 1987 J. Cryst. Growth 81 304 [20] Durmuslar A S, Mora-Ramos M E and Ungan F 2020 Opt. Quant. Electron. 52 495 [21] Sahoo N, Sahu A K and Palo S K 2021 Physica B 608 412798 [22] Salazar-Santa J D, Mora-Ramos M E and Marín J H 2020 Philos. Mag. 101 689 [23] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2020 Phys. Scr. 95 095813 [24] Ozturk E and Ozdemir Y 2013 Opt. Commun. 294 361 [25] Martínez-Orozcom J C, Rodríguez-Magdaleno K A, Suárez-López J R, Duque C A and Restrepo R L 2016 Superlattice Microst. 92 166 [26] Wang Y, Hamers R J and Kaxiras E 1995 Phys. Rev. Lett. 74 403 [27] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Int. J. Mod. Phys. B 33 1950215 [28] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2019 Chin. Phys. B 28 124207 [29] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2020 Eur. Phys. J. B 93 18 [30] Dakhlaoui H, Ungan F, Martínez-Orozco J C and Mora-Ramos M E 2021 Physica B 607 412782 [31] Ahn D and Chuang S 1987 IEEE J. Quantum Elect. 23 2196 [32] Kuhn K J, Iyengar G U and Yee S 1991 J. Appl. Phys. 70 5010 [33] Ioratti L 1990 Phys. Rev. B 41 8340 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|