Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 046104    DOI: 10.1088/1674-1056/24/4/046104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterization of ZnS nanoparticles synthesized by co-precipitation method

Parvaneh Iranmanesha, Samira Saeedniab, Mohsen Nourzpoora
a Department of Physics, Vali-e-Asr University of Rafsanjan, 77139-36417 Rafsanjan, Iran;
b Department of Chemistry, Vali-e-Asr University of Rafsanjan, 77139-36417 Rafsanjan, Iran
Abstract  ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum.
Keywords:  nanoparticles      zinc sulfide      optical properties      co-precipitation  
Received:  12 October 2014      Revised:  18 November 2014      Accepted manuscript online: 
PACS:  61.82.Rx (Nanocrystalline materials)  
Corresponding Authors:  Parvaneh Iranmanesh     E-mail:  p.iranmanesh@vru.ac.ir,p.iranmanesh@gmail.com

Cite this article: 

Parvaneh Iranmanesh, Samira Saeednia, Mohsen Nourzpoor Characterization of ZnS nanoparticles synthesized by co-precipitation method 2015 Chin. Phys. B 24 046104

[1] Hwang J M, Oh M O, Kim I, Lee J K and Ha C S 2005 Curr. Appl. Phys. 5 31
[2] Cho H, Yun C, Park J and Yoo S 2009 Org. Electron. 10 1163
[3] Hong K J, Jeong T S, Yoon C J and Shin Y J 2000 J. Cryst. Growth 218 19
[4] Yokogawa M and Chen N 2001 J. Crystal Growth 223 369
[5] Yamamoto T, Kishimoto S and Iida S 2001 Physics B 308 916
[6] Liu X, Cai X, Mao J and Jin C 2001 Appl. Surf. Sci. 183 103
[7] Sapsford K E, Pons T, Medntz I L and Mattoussi H 2006 Sensors 6 925
[8] Durandurdu M 2009 J. Phys. Chem. Solids 70 645
[9] Becker W G and Bard A J 1983 J. Phys. Chem. 87 4888
[10] Henglein A and Gutierrez M 1983 Ber. Bunsenges. Phys. Chem. 87 852
[11] Weller H, Koch U, Gutierrez M and Henglein A 1984 Ber. Bunsenges. Phys. Chem. 88 649
[12] Mu J, Gu D and Xu Z 2005 Mater. Res. Bull. 40 2198
[13] Zhu G, Drozdowicz-Tomsia K, McBean K, Phillips M R and Goldys E M 2007 Opt. Mater. 29 1579
[14] Kripal R, Gupta A K, Mishra S K, Srivastava R K, Pandey A C and Prakash S G 2010 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 76 523
[15] Xu Y, Shi L, Zhang X, Wong K and Li Q 2011 Micron 42 290
[16] Borah J P and Sarma K C 2008 Acta Phys. Polon. A 114 713
[17] Hu H and Zhang W 2006 Opt. Mater. 28 536
[18] Hasanzadeh J, Taherkhani A and Ghorbani M 2010 Chin. J. Phys. 51 540
[19] John R and Florence S 2010 Chalcogenide Letters 7 269
[20] Rema Devi B S, Raveendran R and Vaidyan A V 2007 Pramana J. Phys. 68 679
[21] Kuppayee M, Vanathi Nachiyar G K and Ramasamy V 2011 Appl. Surf. Sci. 257 6779
[22] Nakamoto K 1997 Infrared and Raman Spectra of Inorganic and Coordination Compounds 5 (New York: John Wiley)
[23] Denzler D, Olschewski M and Sattler K 1998 J. Appl. Phys. 84 2841
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!