Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086801    DOI: 10.1088/1674-1056/ac70c1

Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method

Runxiao Zhang(张润潇)1,2,†, Zi Liu(刘姿)1,2,†, Xin Hu(胡昕)1,2, Kun Xie(谢鹍)1,2, Xinyue Li(李新月)1,2, Yumin Xia(夏玉敏)1,2, and Shengyong Qin(秦胜勇)1,2,‡
1 CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 International Center for Quantum Design of Functional Materials(ICQD), University of Science and Technology of China, Hefei 230026, China
Abstract  Nanoclusters consisting of a few atoms have attracted a lot of research interests due to their exotic size-dependent properties. Here, well-ordered two-dimensional Sb cluster superlattice was fabricated on Si substrate by a two-step method and characterized by scanning tunneling microscopy. High resolution scanning tunneling microscope measurements revealed the fine structures of the Sb clusters, which consist of several Sb atoms ranging from 2 to 7. Furthermore, the electronic structure of the nanocluster displays the quantized energy-level which is due to the single-electron tunneling effects. We believe that the fabrication of Sb cluster superlattice broadens the species of the cluster superlattice and provides a promising candidate to further explore the novel physical and chemical properties of the semimetal nanocluster.
Keywords:  microstructure      nanoparticles      cluster superlattice      scanning tunneling microscope  
Received:  19 March 2022      Revised:  02 May 2022      Accepted manuscript online:  18 May 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  36.40.-c (Atomic and molecular clusters)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2017YFA0205004), the National Natural Science Foundation of China (Grant Nos. 92165201, 11474261, and 11634011), the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006, and WK3430000003), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000).
Corresponding Authors:  Shengyong Qin     E-mail:

Cite this article: 

Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇) Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method 2022 Chin. Phys. B 31 086801

[1] Jena P and Sun Q 2018 Chem. Rev. 118 5755
[2] Ma Q M, Xie Z, Liu Y and Li Y C 2007 Chin. Phys. Lett. 24 1908
[3] Chen C, Zheng H, Mills A, Heflin J R and Tao C 2015 Sci. Rep. 5 14336
[4] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[5] Sitja G, Le Moal S, Marsault M, Hamm G, Leroy F and Henry C R 2013 Nano Lett. 13 1977
[6] Liu C, He H, Zapol P and Curtiss L A 2014 Phys. Chem. Chem. Phys. 16 26584
[7] Mousadakos D, Pivetta M, Brune H and Rusponi S 2017 New J. Phys. 19 123021
[8] Hartl T, Will M, Čapeta D, Singh R, Scheinecker D, Boix de la Cruz V, Dellmann S, Lacovig P, Lizzit S, Senkovskiy B V, Grüneis A, Kralj M, Knudsen J, Kotakoski J, Michely T and Bampoulis P 2020 ACS Nano 14 13629
[9] Will M, Hartl T, Boix de la Cruz V, Lacovig P, Lizzit S, Knudsen J, Michely T and Bampoulis P 2021 J. Phys. Chem. C 125 3880
[10] Weiss N, Cren T, Epple M, Rusponi S, Baudot G, Rohart S, Tejeda A, Repain V, Rousset S, Ohresser P, Scheurer F, Bencok P and Brune H 2005 Phys. Rev. Lett. 95 157204
[11] Pan M H, Liu H, Wang J Z, Jia J F, Xue Q K, Li J L, Qin S, Mirsaidov U M, Wang X R, Markert J T, Zhang Z and Shih C K 2005 Nano Lett. 5 87
[12] Vo Van C, Schumacher S, Coraux J, Sessi V, Fruchart O, Brookes N B, Ohresser P and Michely T 2011 Appl. Phys. Lett. 99 142504
[13] N'Diaye A T, Bleikamp S, Feibelman P J and Michely T 2006 Phys. Rev. Lett. 97 215501
[14] Gerber T, Knudsen J, Feibelman P J, Grånäs E, Stratmann P, Schulte K, Andersen J N and Michely T 2013 ACS Nano 7 2020
[15] Will M, Atodiresei N, Caciuc V, Valerius P, Herbig C and Michely T 2018 ACS Nano 12 6871
[16] Brihuega I, Michaelis CH, Zhang J, Bose S, Sessi V, Honolka J, Alexander Schneider M, Enders A and Kern K 2008 Surf. Sci. 602 L95
[17] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W and Li S C 2020 Nano Lett. 20 8408
[18] Hsu C H, Huang Z Q, Chuang F C, Kuo C C, Liu Y T, Lin H and Bansil A 2015 New J. Phys. 17 025005
[19] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323
[20] Kim S H, Jin K H, Park J, Kim J S, Jhi S H and Yeom H W 2016 Sci. Rep. 6 33193
[21] Cheng Z D and Zhu J 2010 Chin. Phys. B 19 57101
[22] Xi S G, Li Q Y, Hu Y F, Yuan Y Q, Zhao Y R, Yuan J J, Li M C and Yang Y J 2022 Chin. Phys. B 31 016106
[23] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[24] Elswijk H B, Dijkkamp D and van Loenen E J 1991 Phys. Rev. B 44 3802
[25] Hupalo M, Schmalian J and Tringides M C 2003 Phys. Rev. Lett. 90 216106
[26] Hogan C, Holtgrewe K, Ronci F, Colonna S, Sanna S, Moras P, Sheverdyaeva P M, Mahatha S, Papagno M, Aliev Z S, Babanly M, Chulkov E V, Carbone C and Flammini R 2019 ACS Nano 13 10481
[27] Andres Ronald P, Bielefeld Jeffery D, Henderson Jason I, Janes David B, Kolagunta Venkat R, Kubiak Clifford P, Mahoney William J and Osifchin Richard G 1996 Science 273 1690
[28] N'Diaye A T, Gerber T, Busse C, Mysliveček J, Coraux J and Michely T 2009 New J. Phys. 11 103045
[29] Iovan A, Haviland D B and Korenivski V 2006 Appl. Phys. Lett. 88 163503
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[10] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[14] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!