Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038103    DOI: 10.1088/1674-1056/acb912
RAPID COMMUNICATION Prev   Next  

Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance

Chen-Lu Jiao(焦晨璐)1,2, Guang-Wei Shao(邵光伟)3, Yu-Yue Chen(陈宇岳)2, and Xiang-Yang Liu(刘向阳)1,†
1 College of Ocean and Earth Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen/Xiamen 361005, China;
2 College of Textile and Clothing Engineering, Soochow University, Suzhou 215006, China;
3 Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
Abstract  This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate (SA) aerogels to enhance the macroscopic performance. The strategy was implemented by meso-functionalizing and reorganizing SA aerogels via controlled heterogeneous nucleation, in which microcrystalline cellulose-manganese dioxide (MCC-MnO2) nano-crystallites worked as template. Due to the short rod-like structure and abundant hydroxyl groups of MCC-MnO2, the organized mesostructure of SA aerogels was reconstructed during the assembly of SA molecule chains, which gave rise to a significant enhancement in macroscopic performance of SA areogels. For instance, the functionalized and reconstructed MCC-MnO2/SA aerogels acquired a more than 70% increase in mechanical strength with an excellent deformation recovery. Furthermore, an almost double enhancement of removal capacity for metal ions (i.e., Cu2+ and Pb2+) and organic dyes (i.e., congo red and methylene blue) was obtained for MnO2/SA aerogels, with an 87% repossession of the pollutants removal performance after 5 operation cycles.
Keywords:  mesoscopic reconstruction      aerogel      sodium alginate      microcrystalline cellulose      MnO2 nanoparticles  
Received:  13 January 2023      Revised:  28 January 2023      Accepted manuscript online:  06 February 2023
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.20.Rg (Aerosols in materials synthesis and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074322), Shenzhen Science and Technology Plan Project (Grant No. JCYJ20180504170208402), Science and Technology Project of Xiamen City (Grant No. 3502Z20183012), Science and Technology Planning Project of Guangdong Province, China (Grant No. 2018B030331001).
Corresponding Authors:  Xiang-Yang Liu     E-mail:  liuxy@xum.edu.cn

Cite this article: 

Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳) Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance 2023 Chin. Phys. B 32 038103

[1] Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z and Liu S 2015 Sci. Adv. 1 e1500372
[2] Miller J S, Stevens K R, Yang M T, Baker B M, Nguyen D H T, Cohen D M, Toro E, Chen A A, Galie P A and Yu X 2012 Nat. Mater. 11 768
[3] Davis M E 2002 Nature 417 813
[4] Alsbaiee A, Smith B J, Xiao L, Ling Y, Helbling D E and Dichtel W R 2016 Nature 529 190
[5] Horike S, Shimomura S and Kitagawa S 2009 Nat. Chem. 1 695
[6] Ulker Z and Erkey C 2014 RSC Adv. 4 62362
[7] Shi C, Hu F, Wu R, Xu Z, Shao G, Yu R and Liu X Y 2021 Adv. Mater. 33 2005910
[8] Zhang Y, Chen C, Qiu Y, Ma L, Qiu W, Yu R, Yu W and Liu X Y 2021 Adv. Funct. Mater. 31 2100150
[9] Krieg E, Weissman H, Shirman E, Shimoni E and Rybtchinski B 2011 Nat. Nanotech. 6 141
[10] Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T and Teramae N 2004 Nat. Mater. 3 337
[11] Yoo S, Kim J H, Shin M, Park H, Kim J H, Lee S Y and Park S 2015 Sci. Adv. 1 e1500101
[12] Zhao S, Zhang Z, Sébe G, Wu R, Rivera Virtudazo R V, Tingaut P and Koebel M M 2015 Adv. Funct. Mater. 25 2326
[13] Bai H, Chen Y, Delattre B, Tomsia A P and Ritchie R O 2015 Sci. Adv. 1 e1500849
[14] Qiu W, Patil, Hu F and Liu X Y 2019 Small 15 1903948
[15] Chen Z, Hu F, Lin Z, Hu J, Shen R, Lin Y and Liu X Y 2021 Small Sci. 1 2000049
[16] Wang X, Qiu W and Liu X Y 2023 J. Crystal Growth 603 126977
[17] Song Y, Lin Z, Kong L, Xing Y, Lin N, Zhang Z, Chen B H and Liu X Y 2017 Adv. Funct. Mater. 27 1700628
[18] Xing Y, Shi C, Zhao J, Qiu W, Lin N, Wang J, Yan X B, Yu W D and Liu X Y 2017 Small 13 1702390
[19] Chen Z, Zhang H, Lin Z, Lin Y, Van Esch J H and Liu X Y 2016 Adv. Funct. Mater. 26 8978
[20] Chen W, Li S, Chen C and Yan L 2011 Adv. Mater. 23 5679
[21] Tran Diana N H, Kabiri S, Wang L S and Losic D 2015 J. Mater. Chem. A 3 6844
[22] Yu R, Shi Y, Yang D, Liu Y, Qu J and Zhong Z Y 2017 ACS Appl. Mater. Interfaces 9 21809
[23] McKee J R, Appel E A, Seitsonen J, Kontturi E, Scherman O A and Ikkala O 2014 Adv. Funct. Mater. 24 2706
[24] Partap S, Rehman I, Jones J R and Darr J A 2006 Adv. Mater. 18 501
[25] Lee K Y and Mooney D J 2012 Prog. Polym. Sci. 37 106
[26] Wang L, Shelton R M, Cooper P R, Lawson M, Triffitt J T and Barralet J E 2003 Biomaterials 24 3475
[27] Fan J, Shi Z, Lian M, Li H and Yin J 2013 J. Mater. Chem. A 1 7433
[28] Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H and Chen Y 2016 Int. J. Biol. Macromol. 83 133
[29] Sone H, Fugetsu B and Tanaka S 2009 J. Hazard. Mater. 162 423
[30] Balakrishnan B, Joshi N, Jayakrishnan A and Banerjee R 2014 Acta Biomaterialia 10 3650
[31] Kundu J, Shim J H, Jang J, Kim S W and Cho D W 2015 J. Tissue Eng. Regen. Med. 9 1286
[32] Balakrishnan B, Mohanty M, Umashankar P R and Jayakrishnan A 2005 Biomaterials 26 6335
[33] Shamshina J, Gurau G, Block L, Hansen L, Dingee C, Walters A and Rogers R 2014 J. Mater. Chem. B 2 3924
[34] Zhao J, Zhao X, Guo B and Ma P X 2014 Biomacromolecules 15 3246
[35] Couvreur P 2014 Nat. Nanotech. 9 874
[36] Li J, Illeperuma W R K, Suo Z and Vlassak J J 2014 ACS Macro Letters 3 520
[37] Sun J Y, Zhao X, Illeperuma W R, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J and Suo Z 2012 Nature 489 133
[38] Kuo C K and Ma P X 2001 Biomaterials 22 511
[39] Xiong R, Zhang X, Tian D, Zhou Z and Lu C 2012 Cellulose 19 1189
[40] Eichhorn S J, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S J, Weder C, Thielemans W, Roman M and Renneckar S 2010 J. Mater. Sci. 45 1
[41] Zhang J, Cao Y, Feng J and Wu P 2012 J. Phy. Chem. C 116 8063
[42] Teng S X, Wang S G, Gong W X, Liu X W and Gao B Y 2009 J. Hazard. Mater. 168 1004
[43] Liu R, Liu H, Zhao X, Qu J and Zhang R 2010 J. Hazard. Mater. 176 926
[44] Chacón-Patiño M L, Blanco-Tirado C, Hinestroza J P and Combariza M Y 2013 Green Chem. 15 2920
[45] Jiao C, Tao J, Xiong J, Wang X, Zhang D, Lin H and Chen Y 2017 Cellulose 24 2591
[46] Wu R, Ma L and Liu X Y 2022 Adv. Sci. 9 2103981
[47] Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C, Li Y, Qiu W, Huang L, Wang J, Lin N, Wan Y, Hu J and Liu X Y 2020 Small 16 2000203
[48] Zhang L, Hu F, Zhu S, Lin Y, Meng Z, Yu R and Liu X Y 2020 Small 16 2000128
[49] Chen X, Shao Z, Knight D P and Vollrath F 2007 Proteins 68 223
[50] Qiu W and Liu X Y 2022 Adv. Fiber Mater. 4 390
[51] Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough J R, Cui X, Cui Y and Bao Z 2011 Nano Lett. 11 2905
[52] Liang S, Teng F, Bulgan G, Zong R and Zhu Y 2008 J. Phy. Chem. C 112 5307
[53] Chen H, He J, Zhang C and He H 2007 J. Phy. Chem. C 111 18033
[54] Avramov I 2007 Physica A 379 615
[55] Teh J W, Blom H P and Rudin A 1994 Polymer 35 1680
[56] Rogers M A and Marangoni A G 2008 Cryst. Growth Des. 8 4596
[57] Mallia V A, Terech P and Weiss R G 2011 J. Phy. Chem. B 115 12401
[58] Shi C, Wang J, Sushko M L, Qiu W, Yan X and Liu X Y 2019 Adv. Funct. Mater. 29 1904777
[59] Chen N, Wan C, Zhang Y and Zhang Y 2004 Polymer Testing 23 169
[60] Xie X L, Liu Q X, Li R K Y, Zhou X P, Zhang Q X, Yu Z Z and Mai Y W 2004 Polymer 45 6665
[61] Basrur V R, Guo J, Wang C and Raghavan S R 2013 ACS Appl. Mater. Interfaces 5 262
[62] Nguyen A T, Huang Q L, Yang Z, Lin N, Xu G and Liu X Y 2015 Small 11 1039
[63] Liu F, Chung S, Oh G and Seo T S 2012 ACS Appl. Mater. Interfaces 4 922
[64] Xing Y, Liu D and Zhang L P 2010 Desalination 259 187
[65] Auta M and Hameed B H 2014 Chem. Eng. J. 237 352
[66] Tao J, Xiong J, Jiao C, Zhang D, Lin H and Chen Y 2017 Carbohydr. Polym. 166 271
[67] Wu Z, Zhong H, Yuan X, Wang H, Wang L, Chen X, Zeng G and Wu Y 2014 Water Res. 67 330
[68] Huang H, Lü S, Zhang X and Shao Z 2012 Soft Matt. 8 4609
[69] Bigi A, Cojazzi G, Panzavolta S, Rubini K and Roveri N 2001 Biomaterials 22 763
[70] Hsu Y Y, Gresser J D, Trantolo D J, Lyons C M, Gangadharam P R J and Wise D L 1997 J. Biomed. Mater. Res. 35 107
[1] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[2] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
No Suggested Reading articles found!