Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048703    DOI: 10.1088/1674-1056/ac380f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles

Hui-Fang Wang(王慧芳)1, Chun-Rong Li(李春蓉)1, Min-Na Sun(孙敏娜)2,†, Jun-Xing Pan(潘俊星)1,3,‡, and Jin-Jun Zhang(张进军)1,§
1 Department of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China;
2 Beijing Key Laboratory for Sensors, Beijing Information Science&Technology University, Beijing 100192, China;
3 Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041004, China
Abstract  With the emergence and rapid development of nanotechnology, the nanoparticles hybridized with multicomponent lipids are more and more used in gene delivery. These vectors interact with the cell membrane before entering into the cell. Therefore, the nature of this interaction is important in investigating multicomponent liposome-nanoparticle (MLP) transport across the cell membrane. In this paper the transport of MLPs across the membranes of giant vesicles (GVs) in solvents is studied by using the self-consistent field theory (SCFT). Based on the analysis of the MLP permeating the GV membranes, a simple transport model is proposed. The effects of the difference in membrane morphology and the size of the nanoparticle on the endocytosis are discussed systematically. The role of energy barriers in quasi-equilibrium is also examined. The results indicate that the interaction between MLP and GV is a spontaneous process and the energy barrier needs overcoming to form metastable intermediates. The results provide theoretical reference for better understanding the transmembrane transport process of nanoparticles, and guidance for relevant experimental studies as well.
Keywords:  multicomponent liposome-nanoparticles      self-consistent field theory      giant vesicles      energy barrier  
Received:  23 August 2021      Revised:  29 October 2021      Accepted manuscript online:  10 November 2021
PACS:  87.16.D- (Membranes, bilayers, and vesicles)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: Project supported by the Science and Technology Innovation Project of Higher Education in Shanxi Province, China (Grant No. 2020L0752), the Basic Research Foundation Project in Modern College of Humanities and Sciences of Shanxi Normal University, China (Grant No. 2020JCYJ25), and the Graduate Student Science and Technology Innovation Project of Shanxi Normal University, China (Grant No. 01053011).
Corresponding Authors:  Min-Na Sun, Jun-Xing Pan, Jin-Jun Zhang     E-mail:  sunminna@bistu.edu.cn;panjx@sxnu.edu.cn;zhangjinjun@sxnu.edu.cn

Cite this article: 

Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军) Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles 2022 Chin. Phys. B 31 048703

[1] Dizaj S M, Jafari S and Khosroushahi A Y 2014 Nanoscale Res. Lett. 9 252
[2] Lunsdtrom K 2018 Diseases 6 24
[3] Walsh D P, Heise A, O'Brien F J and Cryan S A 2017 Gene Ther. 24 681
[4] Hardee C, Arévalo-Soliz L M, Hornstein B D and Zechiedrich L 2017 Genes 8 65
[5] Roth T L, Puig-Saus C, Yu R, et al. 2018 Nature 559 405
[6] Tian H, Chen J and Chen X 2013 Small 9 2034
[7] Yin H, Kanasty R L, Eltoukhy A A, Vegas A J, Dorkin J R and Anderson D G 2014 Nature Reviews Genetics 15 541
[8] Niidome T and Huang L 2002 Gene Therapy 9 1647
[9] Buck J, Grossen P, Cullis P R, Huwyler J and Witzigmann D 2019 ACS Nano 13 3754
[10] Xiong F, Zhen M and Ning G 2011 Pharmazie 66 158
[11] Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart L K, Zhao M and Burgess D J 2006 Mol. Ther. 14 192
[12] Wang D L, Lu X G, Jia F, Tan X Y, Sun X Y, Cao X Y, Wai F and Zhang C 2017 Chem Mater. 29 9882
[13] Liu J B, Song L L, Liu S L, Jiang Q, Liu Q, Li N, Wang Z G and Ding B Q 2018 Nano Lett. 18 3328
[14] Li P, Li D, Zhang L, Li G and Wang E 2008 Biomaterials 29 3617
[15] Chen H B, Gu Z J, An H W, et al. 2018 Sci. China-Chemistry 61 1503
[16] Chen C C, Lin Y P, Wang C W, Tzeng H C, Wu C H, Chen Y C, Chen C P, Chen L C and Wu Y C 2006 Chem. Soc. 128 3709
[17] Anselmo A C and Mitragotr S 2017 Advanced Drug Delivery Reviews 108 51
[18] Rosi N L, Giljohann D A, Thaxton C S, Lytton-Jean A K R, Han M S and Mirkin C A 2006 Science 312 1027
[19] Ting C L and Frischknecht A L 2013 Soft Matter 9 9615
[20] Li Y, Kroger M and Liu W K 2014 Biomaterials 35 8467
[21] Felgner P L, Gadek T R, Holm M, RomaR, Chan H W, Wenz M, Northrop J P, Ringold G M and Danielsen M 1987 Proc. Natl. Acad. Sci. USA 84 7413
[22] Du B J, Tian L, Gu X X, Li D, Wang E K and Wang J 2015 Small 11 2333
[23] Pozzi D, Marchini C, Cardarelli F, Rossetta A, Colapicchioni V, Amici A, Montani M, Motta S, Brocca P, Cantu L and Caracciolo G 2013 Mol. Pharm. 10 4654
[24] Saptarshi Chakraborty, Akram Abbasi, Geoffrey D Bothun, Michihiro Nagao, and Christopher L Kitchens 2018 Langmuir 34 13416
[25] Zylberberg C, Gaskill K, Pasley S and Matosevic S 2017 Gene Ther. 24 441
[26] Bruno Stieger, Julia Steiger, Kaspar P Locher 2021 Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1867 166079
[27] Xu G K, Li Y, Li B, Feng X Q and Gao H J 2009 Soft Matter 5 3977
[28] Zhang P W and Shi A C 2015 Chin. Phys. B 24 128707
[29] Lee J Y and Schick M 2008 Biophys. J. 94 1699
[30] Ting C L and Wang Z G 2012 Soft Matter 8 12066
[31] Mao J, Guo R H and Yan L T 2014 Biomaterials 35 6069
[32] Ding H M and Ma Y Q 2015 Small 11 1055
[33] He L L, Zhang R F and Ji Y Y 2012 Chin. Phys. B 21 088301
[34] Guo R H, Mao J and Yan L T 2013 ACS Nano 7 10646
[35] Zhang Q Y 2009 Chin. Phys. B 18 658
[36] Ginzburg V V and Balijepalli S 2007 Nano Lett. 7 3716
[37] Mao J, Chen P, Liang J, Guo R and Yan L T 2016 ACS Nano 10 1493
[38] Muller M, Katsov K and Schick M 2003 Biophys. J. 85 1611
[39] Israelachvili J N 1992 Intermolecular and Surface Forces, 2nd edn. (New York:Academic) p. 59
[40] Muller M, KatsovmK and Schick M 2006 Phys. Rep. 434 113
[41] Zhang Q Y and MaY Q 2006 J. Chem. Phys. 125 464
[42] Drolet F and Fredrickson G H 1999 Phys. Rev. Lett. 83 4317
[43] Fredrickson G H, Ganesan V and Drolet F 2002 Macromolecules 35 16
[44] Kawamoto S, Klein M L and Shinoda W 2015 J. Chem. Phys. 143 923
[45] Siegel D P 1986 Biophys. J. 49 1171
[46] SmeijersA F, Markvoort A J, Pieterse A K and Hilbers P A J 2006 J. Phys. Chem. B 110 13212
[47] Siegel D P 1993 Biophys. J. 65 2124
[48] Knecht V and Marrink S J 2007 Biophys. J. 92 4254
[1] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[2] Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces
Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国). Chin. Phys. B, 2018, 27(8): 086801.
[3] Dissociation of H2 on Mg-coated B12C6N6
Li Ma(马丽), Xue-Ling Jin(金雪玲), Hui-Hui Yang(杨慧慧), Xiao-Xia Wang(王小霞), Ning Du(杜宁), Hong-Shan Chen(陈宏善). Chin. Phys. B, 2017, 26(6): 068801.
[4] Combined multi-level quantum mechanics theories and molecular mechanics study of water-induced transition state of OH-+CO2 reaction in aqueous solution
Chen Li(李琛), Meixing Niu(牛美兴), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2017, 26(10): 103401.
[5] Application of self-consistent field theory to self-assembled bilayer membranes
Zhang Ping-Wen (张平文), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(12): 128707.
[6] Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere
Tong Zhao-Yang (童朝阳), Zhu Yue-Jin (诸跃进), Tong Chao-Hui (童朝晖). Chin. Phys. B, 2014, 23(3): 038202.
[7] Influence of Ga+ ion irradiation on thermal relaxation of exchange bias field in exchange-coupled CoFe/IrMn bilayers
Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Miao Xue-Fei(缪雪飞), Li Zi-Quan(李子全), and Huang Yi-Zhong(黄一中). Chin. Phys. B, 2011, 20(5): 057503.
[8] Dynamics of Bose–Einstein condensate in a harmonic potential and a Gaussian energy barrier
Hua Wei(花巍), Li Bin(李彬), and Liu Xue-Shen(刘学深). Chin. Phys. B, 2011, 20(1): 010311.
[9] Thermal relaxation of exchange bias field in an exchange coupled CoFe/IrMn bilayer
Qi Xian-Jin(祁先进), Wang Yin-Gang(王寅岗), Zhou Guang-Hong(周广宏), Li Zi-Quan(李子全), and Guo Min(郭敏). Chin. Phys. B, 2010, 19(3): 037503.
[10] Cylindrical-confinement-induced phase behaviours of diblock copolymer melts
Liu Mei-Jiao(刘美娇), Li Shi-Ben(李士本), Zhang Lin-Xi(章林溪), and Wang Xiang-Hong(王向红). Chin. Phys. B, 2010, 19(2): 028101.
[11] Pair interaction of bilayer-coated nanoscopic particles
Zhang Qi-Yi(张启义). Chin. Phys. B, 2009, 18(2): 658-663.
No Suggested Reading articles found!