Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077901    DOI: 10.1088/1674-1056/ac4e0e
Special Issue: TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
SPECIAL TOPIC—Laser and plasma assisted synthesis of advanced nanomaterials in liquids Prev   Next  

Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction

Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞)§
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science&Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract  One promising way to tune the physicochemical properties of materials and optimize their performance in various potential applications is to engineer material structures at the atomic level. As is well known, the performance of Pd-based catalysts has long been constrained by surface contamination and their single structure. Here, we employed an unadulterated top-down synthesis method, known as laser fragmentation in liquid (LFL), to modify pristine PdPS crystals and obtained a kind of metastable palladium-sulfur compound nanoparticles (LFL-PdS NPs) as a highly efficient electrocatalyst for hydrogen evolution reaction (HER). Laser fragmentation of the layered PdPS crystal led to a structural reorganization at the atomic level and resulted in the formation of uniform metastable LFL-PdS NPs. Noteworthy, the LFL-PdS NPs show excellent electrocatalytic HER performance and stability in acidic media, with an overpotential of -66 mV at 10 mA· cm-2, the Tafel slope of 42 mV· dec-1. The combined catalytic performances of our LFL-PdS NPs are comparable to the Pt/C catalyst for HER. This work provides a top-down synthesis strategy as a promising approach to design highly active metastable metal composite electrocatalysts for sustainable energy applications.
Keywords:  Pd-based electrocatalyst      hydrogen evolution reaction      laser fragmentation in liquid      nanoparticles  
Received:  13 November 2021      Revised:  08 January 2022      Accepted manuscript online:  24 January 2022
PACS:  79.20.Eb (Laser ablation)  
  81.16.Hc (Catalytic methods)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313339), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017B090918002), the National Key Basic Research Program of China (Grant Nos. 2014CB931700 and 2017YFA020623), the National Natural Science Foundation of China (Grant Nos. 51832011 and 91833302), and the Fund from State Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2021-PZ-02).
Corresponding Authors:  Peng Yu, Pu Li     E-mail:;

Cite this article: 

Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞) Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction 2022 Chin. Phys. B 31 077901

[1] Khan M A, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L and Zhang J 2018 Electrochem. Energy Rev. 1 483
[2] Popczun E J, Read C G, Roske C W, Lewis N S and Schaak R E 2014 Angew. Chem. Int. Ed. 53 5427
[3] Ito Y, Cong W, Fujita T, Tang Z and Chen M 2015 Angew. Chem. Int. Ed. 54 2131
[4] Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K and Kim J J 2012 J. Mater. Chem. 22 15153
[5] Tang Y J, Gao M R, Liu C H, Li S L, Jiang H L, Lan Y Q, Han M and Yu S H 2015 Angew. Chem. Int. Ed. 54 12928
[6] Fan X, Peng Z, Ye R, Zhou H and Guo X 2015 ACS Nano 9 7407
[7] Esposito D V, Hunt S T, Kimmel Y C and Chen J G 2012 J. Am. Chem. Soc. 134 3025
[8] Morales-Guio C G and Hu X 2014 Acc. Chem. Res. 47 2671
[9] Niu Y, Li W, Wu X, Feng B, Yu Y, Hu W and Li C M 2019 J. Mater. Chem. A 7 10534
[10] Yang L, Xiao X, Yang Z, Cai Y, Xie B, Zhao N, Li X, Wang Y, Liu M, Wang X, Wang G, Gan Z, Meng M, Yang W, Zhang J and Liu J M 2018 Int. J. Hydrogen Energy 43 15135
[11] Cardoso D S P, Eugénio S, Silva T M, Santos D M F, Sequeira C A C and Montemor M F 2015 RSC Adv. 5 43456
[12] Adit M T and Peterson A A 2014 J. Phys. Chem. C 118 4275
[13] Sarkar S and Peter S C 2018 Inorg. Chem. Front. 5 2060
[14] Luo Z, Ouyang Y, Zhang H, Xiao M, Ge J, Jiang Z, Wang J, Tang D, Cao X, Liu C and Xing W 2018 Nat. Commun. 9 2120
[15] Bhowmik T, Kundu M K and Barman S 2016 ACS Catal. 6 1929
[16] Zhang R, Sun Z, Feng R, Lin Z, Liu H, Li M, Yang Y, Shi R, Zhang W and Chen Q 2017 ACS Appl. Mater. Interfaces 9 38419
[17] Kukunuri S, Austeria P M and Sampath S 2016 Chem. Commun. (Camb) 52 206
[18] Zhang X, Luo Z, Yu P, Cai Y, Du Y, Wu D, Gao S, Tan C, Li Z, Ren M, Osipowicz T, Chen S, Jiang Z, Li J, Huang Y, Yang J, Chen Y, Ang C Y, Zhao Y, Wang P, Song L, Wu X, Liu Z, Borgna A and Zhang H 2018 Nat. Catal. 1 460
[19] Zhu J, Hu L, Zhao P, Lee L Y S and Wong K Y 2020 Chem. Rev. 120 851
[20] Zheng J, Zhou S, Gu S, Xu B and Yan Y 2016 J. Electrochem. Soc. 163 F499
[21] Tiwari J N, Harzandi A M, Ha M, Sultan S, Myung C W, Park H J, Kim D Y, Thangavel P, Singh A N, Sharma P, Chandrasekaran S S, Salehnia F, Jang J W, Shin H S, Lee Z and Kim K S 2019 Adv. Energy Mater. 9 1900931
[22] Jeitschko W 1974 Acta Cryst. B 30 2565
[23] Zhu J, Hu S, Wang W, Xia W W, Chen H T and Chen X B 2017 Appl. Phys. A 123 244
[24] Liang S X, Zhang L C, Reichenberger S and Barcikowski S 2021 Phys. Chem. Chem. Phys. 23 11121
[25] Kibis L S, Titkov A I, Stadnichenko A I, Koscheev S V and Boronin A I 2009 Appl. Surf. Sci. 255 9248
[26] Grasso V and Silipigni L 2003 J. Vac. Sci. Technol. A 21 860
[27] Duan J, Chen S, Ortiz-Ledon C A, Jaroniec M and Qiao S Z 2020 Angew. Chem. Int. Ed. 59 8181
[28] Zubavichus Y V, Golub A S, Novikov Y N, Slovokhotov Y L, Nesmeyanov A N, Schilling P J and Tittsworth R C 1997 J. Phys. IV 7 1057
[29] Amendola V, Amans D, Ishikawa Y, Koshizaki D, Sciré S, Compagnini G, Reichenberger S and Barcikowski S 2020 Chem. Eur. J. 26 9206
[30] Zhang D S, Zhang C, Liu J, Chen Qi, Zhu X G and Liang C H 2019 ACS Appl. Nano Mater. 2 28
[31] Gaashani R A, Najjar A, Zakaria Y, Mansour S and Atieh M A 2019 Ceram. Int. 45 14439
[32] Wang X F, Feng Z J, Huang J T, Deng W, Li X B, Zhang H S and Wen Z H 2018 Carbon 127 149
[33] Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis M N, Li R, Sham T K, Gu M, Liu L M, Botton G A and Sun X 2019 Nat. Commun. 10 4936
[34] Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci. Rep. 5 13801
[35] Liu D, Li X, Chen S, Yan H, Wang C, Wu C, Haleem Y A, Duan S, Lu J, Ge B, Ajayan P M, Luo Y, Jiang J and Song L 2019 Nat. Energy 4 512
[36] Wang Y H, Xu K, Zhu Z Z, Guo W, Yu T T, He M S, Wei W X and Yang T 2021 Chem. Commun. 57 1368
[37] Eftekhari A 2017 Int. J. Hydrog. 42 11053
[38] Conway B E and Tilak B V 2002 Electrochim. Acta 47 3571
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[4] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[7] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[11] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[12] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[13] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[14] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[15] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
No Suggested Reading articles found!