|
|
Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal |
Ke Ya-Jiao (柯亚娇), Zhang Xiang-Qun (张向群), Ge Heng (葛恒), Ma Yue (马跃), Cheng Zhao-Hua (成昭华) |
State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in DyFeO3 single crystal. A giant rotating field entropy change of -ΔSMR=16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 kOe. The large anisotropic magnetic entropy change is mainly accounted for the 4f electron of rare-earth Dy3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite DyFeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.
|
Received: 23 October 2014
Revised: 03 November 2014
Accepted manuscript online:
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934202, 2011CB921801, and 2012CB933102) and the National Natural Science Foundation of China (Grant Nos. 11174351, 11274360, and 11034004). |
Corresponding Authors:
Cheng Zhao-Hua
E-mail: zhcheng@iphy.ac.cn
|
Cite this article:
Ke Ya-Jiao (柯亚娇), Zhang Xiang-Qun (张向群), Ge Heng (葛恒), Ma Yue (马跃), Cheng Zhao-Hua (成昭华) Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal 2015 Chin. Phys. B 24 037501
|
[1] |
Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[2] |
Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
|
[3] |
Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
|
[4] |
Kapitza P 1934 Proc. R. Soc. Lond. A 147 189
|
[5] |
Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and NamiKi T 2012 Appl. Phys. Lett. 100 152403
|
[6] |
Li L, Hutchison W D, Huo D, Namiki T, Qian Z and Nishimura K 2012 Scripta Mater. 67 237
|
[7] |
Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
|
[8] |
Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Appl. Phys. Lett. 96 152501
|
[9] |
Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
|
[10] |
Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
|
[11] |
Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G and Ivanova T I 2010 Phys. Rev. Lett. 105 137205
|
[12] |
Kuz'min M D and Tishin A M 1991 J. Phys. D: Appl. Phys. 24 2039
|
[13] |
Das P K, Bhattacharyya A, Kulkarni R, Dhar S K and Thamizhavel A 2014 Phys. Rev. B 89 134418
|
[14] |
Balli M, Jandl S, Fournier P and Gospodinov M M 2014 Appl. Phys. Lett. 104 232402
|
[15] |
Jin J L, Zhang X Q, Li G K, Cheng Z H, Zheng L and Lu Y 2011 Phys. Rev. B 83 184431
|
[16] |
Jin J L, Zhang X Q, Ge H and Cheng Z H 2012 Phys. Rev. B 85 214426
|
[17] |
Huang R, Cao S, Ren W, Zhan S, Kang B and Zhang J 2013 Appl. Phys. Lett. 103 162412
|
[18] |
Berton A 1968 J. Appl. Phys. 39 1367
|
[19] |
Prelorendjo L A, Johnson C E, Thomas M F and Wanklyn B M 1980 J. Phys. C: Solid State Phys. 13 2567
|
[20] |
Rajeswaran B, Sanyal D, Chakrabarti M, Sundarayya Y, Sundaresan A and Rao C N R 2013 Europhys. Lett. 101 17001
|
[21] |
White R L 1969 J. Appl. Phys. 40 1061
|
[22] |
Zhao Z Y, Zhao X, Zhou H D, Zhang F B, Li Q J, Fan C, Sun X F and Li X G 2014 Phys. Rev. B 89 224405
|
[23] |
Tokunaga Y, Iguchi S, Arima T and Tokura Y 2008 Phys. Rev. Lett. 101 097205
|
[24] |
Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M and Rasing T 2005 Nature 435 655
|
[25] |
Tokunaga Y, Taguchi Y, Arima T H and Tokura Y 2012 Nat. Phys. 8 838
|
[26] |
Gorodetsky G, Sharon B and Shtrikman S 1968 J. Appl. Phys. 39 1371
|
[27] |
Gordon J D, Gorodetsky G and Hornreich R M 1976 J. Magn. Magn. Mater. 7 280
|
[28] |
Bidaux R, Bouree J E and Hammann J 1975 J. Phys. Chem. Solids 36 655
|
[29] |
Bouree J E and Hammann J 1975 J. Phys. 36 391
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|