CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal |
Haotian Zhai(翟浩天)1, Tian Gao(高湉)1,2,3,†, Xu Zheng(郑旭)1, Jiali Li(李佳丽)1, Bin Chen(陈斌)2, Hongliang Dong(董洪亮)2, Zhiqiang Chen(陈志强)2, Gang Zhao(赵钢)3, Shixun Cao(曹世勋)3, Chuanbing Cai(蔡传兵)3,‡, and Vyacheslav V. Marchenkov4,5 |
1 Department of Physics, Shanghai University of Electric Power, Shanghai 200090, China; 2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; 3 Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China; 4 M. N. Mikheev Institute of Metal Physics, Ekaterinburg 620108, Russia; 5 Ural Federal University, Ekaterinburg 620002, Russia |
|
|
Abstract The single crystals of Nd$_{0.5}$Pr$_{0.5}$FeO$_{3}$ were successfully grown by optical floating zone method. Room temperature x-ray diffraction and Laue photograph declared the homogeneity and high quality of the crystal. The significant magnetic anisotropy and multiple magnetic transitions illustrate the complex magnetic structure. At high temperatures ($T > 66 $ K), it shows the typical characteristics of $\varGamma _{4}$(G$_{x}$, A$_{y}$, F$_{z}$) state. With the decrease of the temperature, it undergoes a first-order spin reorientation transition from $\varGamma _{4}$(G$_{x}$, A$_{y}$, F$_{z}$) to $\varGamma _{2}$(F$_{x}$, C$_{y}$, G$_{z}$) state in the temperature window of 45-66 K under an applied magnetic field of 0.01 T. As the temperature drops to $\sim 17 $ K, a new magnetic interaction mechanism works, which results in a further enhancement of magnetization. The ${T}$-$H$ phase diagram of Nd$_{0.5}$Pr$_{0.5}$FeO$_{3}$ single crystal was finally constructed.
|
Received: 12 March 2021
Revised: 06 April 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074242 and 51862032), the Ministry of Science and Higher Education of Russia (theme “Spin” No. AAAA-A-18-118020290104-2), and the Government of the Russian Federation (Grant No. 02.A03.21.0006). |
Corresponding Authors:
Tian Gao, Shixun Cao
E-mail: gaotian@shiep.edu.cn;sxcao@shu.edu.cn
|
Cite this article:
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal 2021 Chin. Phys. B 30 077502
|
[1] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V and Rasing T 2004 Nature 429 850 [2] Wu H L, Cao S X, Liu M, Cao Y M, Kang B J, Zhang J C and Ren W 2014 Phys. Rev. B 90 144415 [3] Leiner J C, Kim T, Park K, Oh J, Perring T G, Walker H C, Xu X, Wang Y, Cheong S W and Park J G 2018 Phys. Rev. B 98 134412 [4] Hoedl M F, Gryaznov D, Merkle R, Kotomin E A and Maier J 2020 J. Phys. Chem. C 124 11780 [5] Mir F A, Sharma S K and Kumar R 2014 Chin. Phys. B 23 048101 [6] Eibschütz M, Shtrikman S and Treves D 1967 Phys. Rev. B 156 562 [7] Yuan N, Li R B, Yu Y S, Feng Z J, Kang B J, Zhuo S Y, Ge J Y, Zhang J C and Cao S X 2018 Front. Phys. 14 13502 [8] Cao Y M, Xiang M L, Zhao W Y, Wang G H, Feng Z J, Kang B J, Stroppa A, Zhang J C, Ren W and Cao S X 2016 J. Appl. Phys. 119 063904 [9] Waber M C, Guennou M, Hong J Z, Iniguez J, Vilarinho R, Almedia A, Agostinho M J and Kreisel J 2016 Phys. Rev. B 94 214103 [10] Li Q Y, Zhao D and Li Z D 2021 Chin. Phys. B 30 017504 [11] Cao S X, Chen L, Zhao W Y, Xu K, Wang G h, Yang Y L, Kang B J, Zhao H J, Chen P, Stroppa A, Zheng R K, Zhang J C, Ren W, Íñiguez J and Bellaiche L 2016 Sci. Rep. 6 37529 [12] Yuan S J, Ren W, Hong F, Wang Y B, Zhang J C, Bellaiche L, Cao S X and Cao G 2013 Phys. Rev. B 87 184405 [13] Li E Y, Feng Z, Kang B J, Zhang J C, Ren W and Cao S X 2019 J. Alloy. Compd. 811 152043 [14] Shen H, Cheng Z X, Hong F, Xu J Y and Yuan S J 2013 Appl. Phys. Lett. 103 192404 [15] Tokunaga Y, Iguchi S, Arima T and Tokura Y 2008 Phys. Rev. Lett. 101 097205 [16] Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing T and Kimel A V 2014 Phys. Rev. B 90 184405 [17] Zhou R Z, Jin Z M, Li G F, Ma G H, Cheng Z X and Wang X L 2012 Appl. Phys. Lett. 100 061102 [18] Jiang J J, Jin Z M, Song G B, Lin X, Ma G H and Cao S X 2013 Appl. Phys. Lett. 103 062403 [19] Cao S X, Zhao H Z, Kang B J, Zhang J C and Ren W 2014 Sci. Rep. 4 5960 [20] Wang G H, Zhao W Y, Cao Y M, Kang B J, Zhang J C, Ren W and Cao S X 2016 J. Alloy. Compd. 674 300 [21] Chen L, Li T W, Cao S X, Yuan S J and Hong F 2012 J. Appl. Phys. 111 103905 [22] Gütlich P, Hauser A and Spiering H 1994 Angew. Chem. 33 2024 [23] Zhang W and Huang J 2016 Chin. Phys. B 25 057103 [24] Cao Y M, Xu K, Li Z, Zhang Y L, He X J, Kang Y R, Sun W, Gao T, Qian Z, Liu C Q, Ye M F and Jing C 2019 J. Magn. Magn. Mater. 487 165315 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|