CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Finite size effects on helical edge states in HgTe quantum wells with the spin–orbit coupling due to bulk-and structure-inversion asymmetries |
Cheng Zhi (成志), Zhou Bin (周斌) |
Department of Physics, Hubei University, Wuhan 430062, China |
|
|
Abstract There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin–orbit coupling due to bulk-and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk-and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk-and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
|
Received: 21 September 2013
Revised: 26 November 2013
Accepted manuscript online:
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001). |
Corresponding Authors:
Zhou Bin
E-mail: binzhou@hubu.edu.cn
|
Cite this article:
Cheng Zhi (成志), Zhou Bin (周斌) Finite size effects on helical edge states in HgTe quantum wells with the spin–orbit coupling due to bulk-and structure-inversion asymmetries 2014 Chin. Phys. B 23 037304
|
[1] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[2] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[3] |
Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
|
[4] |
Brüne C, Roth A, Buhmann H, Hankiewicz E M, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2012 Nature Phys. 8 485
|
[5] |
Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nature Mater. 12 787
|
[6] |
König M, Baenninger M, Garcia A G F, Harjee N, Pruitt B L, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W and Goldhaber-Gordon D 2013 Phys. Rev. X 3 021003
|
[7] |
Ma Y, Kundhikanjana W, Wang J, Calvo M R, Lian B, Yang Y, Lai K, Baenninger M, König M, Ames C, Brüne C, Buhmann H, Leubner P, Tang Q, Zhang K, Li X, Molenkamp L W, Zhang S C, Goldhaber-Gordon D, Kelly M A and Shen Z X 2012 arXiv:1212.6441v1 [cond-mat]
|
[8] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[9] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[10] |
Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
|
[11] |
Murakami S 2006 Phys. Rev. Lett. 97 236805
|
[12] |
Liu C X, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
|
[13] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[14] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[15] |
Yang W M, Lin C J, Liao J and Li Y Q 2013 Chin. Phys. B 22 097202
|
[16] |
He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[17] |
Wang J and Zhu B F 2013 Chin. Phys. B 22 067301
|
[18] |
Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
|
[19] |
Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
|
[20] |
Guo H M and Feng S P 2012 Chin. Phys. B 21 077303
|
[21] |
Zhou B, Lu H Z, Chu R L, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
|
[22] |
Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nature Phys. 6 448
|
[23] |
Linder J, Yokoyama T and SudboA 2009 Phys. Rev. B 80 205401
|
[24] |
Liu C X, Zhang H J, Yan B H, Qi X L, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 81 041307
|
[25] |
Lu H Z, Shan W Y, Yao W, Niu Q and Shen S Q 2010 Phys. Rev. B 81 115407
|
[26] |
Shan W Y, Lu H Z and Shen S Q 2010 New J. Phys. 12 043048
|
[27] |
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nature Phys. 6 584
|
[28] |
König M, Buhmann H, Molenkamp L W, Hughes T L, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
|
[29] |
Rothe D G, Reinthaler R W, Liu C X, Molenkamp L W, Zhang S C and Hankiewicz E M 2010 New J. Phys. 12 065012
|
[30] |
Krueckl V and Richter K 2012 Semicond. Sci. Technol. 27 124006
|
[31] |
Takagaki Y 2012 J. Phys.: Condens. Matter 24 435301
|
[32] |
Virtanen P and Recher P 2012 Phys. Rev. B 85 035310
|
[33] |
Zou Y L, Zhang L B and Song J T 2013 J. Phys.: Condens. Matter 25 075801
|
[34] |
Krueckl V and Richter K 2011 Phys. Rev. Lett. 107 086803
|
[35] |
Takagaki Y 2012 Phys. Rev. B 85 155308
|
[36] |
Michetti P, Penteado P H, Egues J C and Recher P 2012 Semicond. Sci. Technol. 27 124007
|
[37] |
Ostrovsky P M, Gornyi I V and Mirlin A D 2012 Phys. Rev. B 86 125323
|
[38] |
Weithofer L and Recher P 2013 New J. Phys. 15 085008
|
[39] |
Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
|
[40] |
Cooper L J, Patel N K, Drouot V, Linfield E H, Ritchie D A and Pepper M 1998 Phys. Rev. B 57 11915
|
[41] |
Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
|
[42] |
Zhang T, Ha J, Levy N, Kuk Y and Stroscio J 2013 Phys. Rev. Lett. 111 056803
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|