Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037101    DOI: 10.1088/1674-1056/ac3ecd

Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)

Na Qin(秦娜)1, Xian Du(杜宪)1, Yangyang Lv(吕洋洋)2, Lu Kang(康璐)1, Zhongxu Yin(尹中旭)1, Jingsong Zhou(周景松)1, Xu Gu(顾旭)1, Qinqin Zhang(张琴琴)1, Runzhe Xu(许润哲)1, Wenxuan Zhao(赵文轩)1, Yidian Li(李义典)1, Shuhua Yao(姚淑华)2, Yanfeng Chen(陈延峰)2, Zhongkai Liu(柳仲楷)3,4, Lexian Yang(杨乐仙)1,5, and Yulin Chen(陈宇林)1,3,4,6,†
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China;
3 School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China;
4 ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China;
5 Frontier Science Center for Quantum Information, Beijing 100084, China;
6 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3 PU, UK
Abstract  Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu$_{2}$Tl$X_{2}$ ($X=\text{Se, Te}$), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu$_{2}$TlSe$_{2}$ to a semimetal in Cu$_{2}$TlTe$_{2}$, suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin-orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin-orbit coupling.
Keywords:  transition metal chalcogenides      spin—orbit coupling      electronic structure      angle-resolved photoemission spectroscopy (ARPES)  
Received:  28 August 2021      Revised:  26 October 2021      Accepted manuscript online:  01 December 2021
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 11774190). We thank for access to DLS beamline I05 and NSRL beamline 13U with help from S. W. Jung, C. Cacho, S. T. Cui, and Z. Sun.
Corresponding Authors:  Yulin Chen     E-mail:

Cite this article: 

Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林) Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te) 2022 Chin. Phys. B 31 037101

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Wang G, Chernikov A, Glazov M, Heinz T, Marie X, Amand T and Urbaszek 2018 Rev. Mod. Phys. 90 021001
[3] Klemm R A 2015 Physica C 514 86
[4] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[5] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960
[6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[7] Zhang Q H, Liu Z K, Sun Y, Yang H F, Jiang J, Mo S K, Hussain Z, Qian X F, Fu L, Yao S H, Lu M H, Felser C, Yan B H, Chen Y L and Yang L X 2019 Phys. Rev. Lett. 103 226803
[8] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973
[9] Rossnagel K 2011 J. Phys:Condens Matter. 23 213001
[10] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[11] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[12] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[13] Fang Y Q, Pan J, Zhang D Q, Wang D, Hirose H T, Terashima T, Uji S, Yuan Y H, Li W, Tian Z, Xue J M, Ma Y H, Zhao W, Xue Q K, Mu G, Zhang H J and Huang F Q 2019 Adv. Mater. 31 1901942
[14] Mok B H, Rao S M, Ling M C, Wang K J, Ke C T, Wu P M, Chen C L, Hsu F C, Huang T W, Luo J Y, Yan D C, Ye K W, Wu T N, Chang A M and Wu M K 2009 Crystal Growth & Design. 9 3260
[15] Chen Y J, Xu L X, Li H J, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040
[16] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2019 Phys. Rev. Lett. 103 226803
[17] Hao Y J, Liu P F, Feng Y, et al. 2019 Phys. Rev. X 9 041038
[18] Li H, Gao S Y, Duan S F, et al. 2019 Phys. Rev. X 9 041039
[19] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J and Kim J S 2018 Nat. Mater. 17 794
[20] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[21] Liu D F, Liang A J, Liu E K, et al. 2019 Science 365 1282
[22] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[23] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[24] Chen Y J, Gu X, Li Y D, Du X, Yang L X and Chen Y L 2020 Matter 3 1114
[25] Lv B, Qian T and Ding H 2019 Nature Reviews Physics 1 609
[26] Jiang J, Tang F, Pan X C, et al. 2015 Phys. Rev. Lett. 115 166601
[27] Van Vleck J H 1937 Phys. Rev. 52 1178
[28] Li X, Lv Y Y, Pang B, Zhang B B, Cao L, Yao S H, Zhou J, Chen Y B, Dong S T, Zhang S T, Lu M H and Chen Y F 2017 Mater. Res. Bull. 89 97
[29] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter. 21 395502
[30] Prandini G, Marrazzo A, Castelli I E, Mounet N and Marzari N 2018 NPJ Computational Materials 4 72
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Computer Physics Communications 224 405
[33] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!