Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040306    DOI: 10.1088/1674-1056/ac398f
GENERAL Prev   Next  

Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling

Hao Zhu(朱浩)1, Shou-Gen Yin(印寿根)1,†, and Wu-Ming Liu(刘伍明)2,3,4,‡
1 Key Laboratory of Display Materials and Photoelectric Devices(Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.
Keywords:  Bose-Einstein condensates      vortex      magnetic field      spin-orbit coupling  
Received:  20 October 2021      Revised:  11 November 2021      Accepted manuscript online:  15 November 2021
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 61835013 and 11971067), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300), Beijing Natural Science Foundation, China (Grant No. 1182009), and Beijing Great Wall Talents Cultivation Program, China (Grant No. CIT&TCD20180325).
Corresponding Authors:  Shou-Gen Yin, Wu-Ming Liu     E-mail:  sgyin@tjut.edu.cn;wmliu@iphy.ac.cn

Cite this article: 

Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明) Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling 2022 Chin. Phys. B 31 040306

[1] Goldstein L 1953 Phys. Rev. 89 597
[2] Pincus P and Shapiro K A 1965 Phys. Rev. Lett. 15 597
[3] Fetter A L 1971 Phys. Rev. Lett. 27 986
[4] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 5516
[5] Babaev E 2008 Phys. Rev. B 77 054512
[6] Tserkovnyak Y and Zou J 2019 Phys. Rev. Research 1 033071
[7] Uji S, Terashima T, Terai Y, Yasuzuka S, Tokumoto M, Tanaka H, Kobayashi A and Kobayashi H 2005 Phys. Rev. B 71 104525
[8] Law K J H, Kevrekidis P G and Tuckerman L S 2010 Phys. Rev. Lett. 105 160405
[9] Mueller E J 2003 Phys. Rev. A 69 033606
[10] Liu C F, Juzeliunas G and Liu W M 2016 Phys. Rev. A 95 023624
[11] Williams J E and Holland M J 1999 Nature 401 568
[12] McEndoo S and Busch T 2010 Phys. Rev. A 82 013628
[13] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[14] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[15] Spielman I B 2009 Phys. Rev. A 79 063613
[16] LeBlanc L J, Jiménez-García K, Williams R A, Beeler M C, Phillips W D and Spielman I B 2015 New J. Phys. 17 065016
[17] Cooper N R, Dalibard J and Spielman I B 2018 Rev. Mod. Phys. 91 015005
[18] Zhang Y, Mao L and Zhang C 2011 Phys. Rev. Lett. 108 035302
[19] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[20] Jian C M and Zhai H 2011 Phys. Rev. B 84 060508(R)
[21] Kawakami T, Mizushima T and Machida K 2011 Phys. Rev. A 84 011607(R)
[22] Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606
[23] Fetter A L 2013 Phys. Rev. A 89 023629
[24] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
[25] Stringari S 2016 Phys. Rev. Lett. 118 145302
[26] Zhou X F, Zhou J and Wu C 2011 Phys. Rev. A 84 063624
[27] Qu C and Stringari S 2018 Phys. Rev. Lett. 120 183202
[28] Jin J, Han W and Zhang S 2018 Phys. Rev. A 98 063607
[29] Ruokokoski E, Huhtamäki, J A M and Möttönen M 2012 Phys. Rev. A 86 051607(R)
[30] Zhou X F, Zhou Z W, Wu C J and Guo G C 2015 Phys. Rev. A 91 033603
[31] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[32] Xu Z F, Kawaguchi Y, You L and Ueda M 2012 Phys. Rev. A 86 033628
[33] Saito H and Ueda M 2005 Phys. Rev. A 72 053628
[34] Ueda M and Koashi M 2002 Phys. Rev. A 65 063602
[35] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152
[36] Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett. 89 190403
[37] Leiler G and Rezzolla L 2006 Phys. Rev. D 73 044001
[38] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624
[39] Bulgakov E N and Sadreev A F 2002 Phys. Rev. Lett. 90 200401
[40] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312
[41] Kobayashi S, Kawaguchi Y, Nitta M and Ueda M 2012 Phys. Rev. A 86 023612
[42] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401
[43] Mizushima T, Kobayashi N and Machida K 2004 Phys. Rev. A 70 043613
[44] Martikainen J P, Collin A and Suominen K A 2002 Phys. Rev. A 66 053604
[45] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[46] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624
[47] Xu X Q and Han H J 2011 Phys. Rev. Lett. 107 200401
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[5] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[6] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[7] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[8] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[9] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[10] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[11] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[12] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
No Suggested Reading articles found!