|
|
Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling |
Hao Zhu(朱浩)1, Shou-Gen Yin(印寿根)1,†, and Wu-Ming Liu(刘伍明)2,3,4,‡ |
1 Key Laboratory of Display Materials and Photoelectric Devices(Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate the vortex structures excited by Ioffe-Pritchard magnetic field and Dresselhaus-type spin-orbit coupling in F=2 ferromagnetic Bose-Einstein condensates. In the weakly interatomic interacting regime, an external magnetic field can generate a polar-core vortex in which the canonical particle current is zero. With the combined effect of spin-orbit coupling and magnetic field, the ground state experiences a transition from polar-core vortex to Mermin-Ho vortex, in which the canonical particle current is anticlockwise. For fixed spin-orbit coupling strengths, the evolution of phase winding, magnetization, and degree of phase separation with magnetic field are studied. Additionally, with further increasing spin-orbit coupling strength, the condensate exhibits symmetrical density domains separated by radial vortex arrays. Our work paves the way to explore exotic topological excitations in high-spin systems.
|
Received: 20 October 2021
Revised: 11 November 2021
Accepted manuscript online: 15 November 2021
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
05.30.Jp
|
(Boson systems)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 61835013 and 11971067), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300), Beijing Natural Science Foundation, China (Grant No. 1182009), and Beijing Great Wall Talents Cultivation Program, China (Grant No. CIT&TCD20180325). |
Corresponding Authors:
Shou-Gen Yin, Wu-Ming Liu
E-mail: sgyin@tjut.edu.cn;wmliu@iphy.ac.cn
|
Cite this article:
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明) Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling 2022 Chin. Phys. B 31 040306
|
[1] Goldstein L 1953 Phys. Rev. 89 597 [2] Pincus P and Shapiro K A 1965 Phys. Rev. Lett. 15 597 [3] Fetter A L 1971 Phys. Rev. Lett. 27 986 [4] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 5516 [5] Babaev E 2008 Phys. Rev. B 77 054512 [6] Tserkovnyak Y and Zou J 2019 Phys. Rev. Research 1 033071 [7] Uji S, Terashima T, Terai Y, Yasuzuka S, Tokumoto M, Tanaka H, Kobayashi A and Kobayashi H 2005 Phys. Rev. B 71 104525 [8] Law K J H, Kevrekidis P G and Tuckerman L S 2010 Phys. Rev. Lett. 105 160405 [9] Mueller E J 2003 Phys. Rev. A 69 033606 [10] Liu C F, Juzeliunas G and Liu W M 2016 Phys. Rev. A 95 023624 [11] Williams J E and Holland M J 1999 Nature 401 568 [12] McEndoo S and Busch T 2010 Phys. Rev. A 82 013628 [13] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806 [14] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628 [15] Spielman I B 2009 Phys. Rev. A 79 063613 [16] LeBlanc L J, Jiménez-García K, Williams R A, Beeler M C, Phillips W D and Spielman I B 2015 New J. Phys. 17 065016 [17] Cooper N R, Dalibard J and Spielman I B 2018 Rev. Mod. Phys. 91 015005 [18] Zhang Y, Mao L and Zhang C 2011 Phys. Rev. Lett. 108 035302 [19] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401 [20] Jian C M and Zhai H 2011 Phys. Rev. B 84 060508(R) [21] Kawakami T, Mizushima T and Machida K 2011 Phys. Rev. A 84 011607(R) [22] Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606 [23] Fetter A L 2013 Phys. Rev. A 89 023629 [24] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604 [25] Stringari S 2016 Phys. Rev. Lett. 118 145302 [26] Zhou X F, Zhou J and Wu C 2011 Phys. Rev. A 84 063624 [27] Qu C and Stringari S 2018 Phys. Rev. Lett. 120 183202 [28] Jin J, Han W and Zhang S 2018 Phys. Rev. A 98 063607 [29] Ruokokoski E, Huhtamäki, J A M and Möttönen M 2012 Phys. Rev. A 86 051607(R) [30] Zhou X F, Zhou Z W, Wu C J and Guo G C 2015 Phys. Rev. A 91 033603 [31] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403 [32] Xu Z F, Kawaguchi Y, You L and Ueda M 2012 Phys. Rev. A 86 033628 [33] Saito H and Ueda M 2005 Phys. Rev. A 72 053628 [34] Ueda M and Koashi M 2002 Phys. Rev. A 65 063602 [35] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152 [36] Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett. 89 190403 [37] Leiler G and Rezzolla L 2006 Phys. Rev. D 73 044001 [38] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624 [39] Bulgakov E N and Sadreev A F 2002 Phys. Rev. Lett. 90 200401 [40] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312 [41] Kobayashi S, Kawaguchi Y, Nitta M and Ueda M 2012 Phys. Rev. A 86 023612 [42] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401 [43] Mizushima T, Kobayashi N and Machida K 2004 Phys. Rev. A 70 043613 [44] Martikainen J P, Collin A and Suominen K A 2002 Phys. Rev. A 66 053604 [45] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253 [46] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624 [47] Xu X Q and Han H J 2011 Phys. Rev. Lett. 107 200401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|