Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107101    DOI: 10.1088/1674-1056/ac7213
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states

Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor, which is fabricated by combination of an s-wave superconductor, a ferromagnet and a semiconductor with Rashba spin—orbit coupling (RSOC). The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC, and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states. Thus, the Kondo screening of magnetic impurity involves the orbital degrees of freedom, and is also affected by the Zeeman field. Using the variational method, we calculate the binding energy and the spin—spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states. We find that Kondo singlet forms more easily with stronger RSOC, but Zeeman field in general decreases the binding energy. The spin—spin correlation decays fast in the vicinity of the magnetic impurity. Due to the RSOC, the spatial spin—spin correlation becomes highly anisotropic, and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin—spin correlation. Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.
Keywords:  Kondo effect      Rashba spin—orbit couplings      p-wave superconductors      Anderson model  
Received:  03 April 2022      Revised:  17 May 2022      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040003).
Corresponding Authors:  Jin-Hua Sun     E-mail:  sunjinhua@nbu.edu.cn

Cite this article: 

Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华) Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states 2022 Chin. Phys. B 31 107101

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Anderson P W 1961 Phys. Rev. 124 41
[3] Wilson K G 1975 Rev. Mod. Phys. 47 773
[4] Yu L 1965 Acta Phys. Sin. 21 75 (in Chinese)
[5] Shiba H 1968 Prog. Theor. Phys. 40 435
[6] Rusinov A I 1969 Sov. Phys. JETP 29 1101
[7] Hudson E W, Lang K M, Madhavan V, Pan S H, Eisaki H, Uchida S and Davis J C 2001 Nature 411 920
[8] Yazdani A, Howald C M, Lutz C P, KapitulniA k and Eigler D M 1999 Phys. Rev. Lett. 83 176
[9] Hudson E W, Pan S H, Gupta A K, Ng K W and Davis J C 1999 Science 285 88
[10] Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S and Davis J C 2000 Nature 403 746
[11] Tsai W F, Zhang Y Y, Fang C and Hu J P 2009 Phys. Rev. B 80 064513
[12] Bang Y K, Choi H Y and Won H 2009 Phys. Rev. B 79 054529
[13] Akbari A, Eremin I and Thalmeier P 2010 Phys. Rev. B 81 014524
[14] Zha G Q and Jin Y Y 2017 Europhys. Lett. 120 27002
[15] Guo Y Wu, Li W and Chen Y 2017 Front. Phys. 12 1
[16] Sau J D and Demler E 2013 Phys. Rev. B 88 205402
[17] Fu Z G, Zhang P, Wang Z G and Li S S 2012 J. Phys.: Condens. Matter 24 145502
[18] Chen L, Zhang Y L and Han R S 2019 J. Phys.: Condens. Matter 31 505603
[19] Chen R, Zhou B and Xu D H 2018 Phys. Rev. B 97 155152
[20] Ishii H 1978 J. Low Temp. Phys. 32 457
[21] Barzykin V and Affleck I 1998 Phys. Rev. B 57 432
[22] Borda L 2007 Phys. Rev. B 75 041307
[23] Moca C P, Weymann I, Werner M A and Zaránd G 2021 Phys. Rev. Lett. 127 186804
[24] Borzenets I V, Shim J, Chen J C H, Ludwig A, Wieck A D, Tarucha S, Sim H S and Yamamoto M 2020 Nature 579 210
[25] Wang Rui, Su W, Zhu J X, Ting C S, Li H, Chen C F, Wang B and Wang X Q 2019 Phys. Rev. Lett. 122 087001
[26] Li L, Sun J H, Su W, Wang Z H, Xu D H, Luo H G and Chen W Q 2021 Phys. Rev. B 103 125144
[27] Varma C M and Yafet Y 1976 Phys. Rev. B 13 2950
[28] Gunnarsson O and Schönhammer K 1983 Phys. Rev. Lett. 50 604
[29] Aji V, Varma C M and Vekhter I 2008 Phys. Rev. B 77 224426
[30] Feng X Y, Chen W Q, Gao J H, Wang Q H and Zhang F C 2010 Phys. Rev. B 81 235411
[31] Sun J H, Xu D H, Zhang F C and Zhou Y 2015 Phys. Rev. B 92 195124
[32] Sun J H, Wang L J, Hu X T, Li L and Xu D H 2018 Phys. Rev. B 97 035130
[33] Wang L J, Hu X T, Li L, Xu D H, Sun J H and Chen W Q 2019 Phys. Rev. B 99 235108
[34] Yang X R, Huang Z Z, Wang W S and Sun J H 2021 Chin. Phys. B 30 067103
[35] Deng Y H, Lü H F, K S S, Guo Y and Zhang H W 2018 J. Phys.: Condens. Matter 30 435602
[36] Hone D 1967 Solid State Commun. 5 705
[37] Simonin J and Allub R 1995 Phys. Rev. Lett. 74 466
[38] Simon M E and Varma C M 1999 Phys. Rev. B 60 9744
[39] Rozhkov A V and Arovas D P 2000 Phys. Rev. B 62 6687
[40] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004
[41] Frigeri P A, Agterberg D F, Koga A and Sigrist M 2004 Phys. Rev. Lett. 92 097001
[42] Frigeri P A, Agterberg D F, Koga A and Sigrist M 2004 Phys. Rev. Lett. 93 099903
[43] Sau J D, Lutchyn R M, Tewari S and Sarma S D 2010 Phys. Rev. Lett. 104 040502
[44] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[45] Ojanen T and Kitagawa T 2012 Phys. Rev. B 85 161202
[46] Wong A, Ulloa S E, Sandler N and Ingersent K 2016 Phys. Rev. B 93 075148
[47] Allison G, Fujita T, Morimoto K, Teraoka S, Larsson M, Kiyama H, Oiwa A, Haffouz S, Austing D G, Ludwig D G, Wieck A D and Tarucha S 2014 Phys. Rev. B 90 235310
[48] Ž itko R and Bonča J 2011 Phys. Rev. B 84 193411
[49] Zarea M, Ulloa S E and Sandler N 2012 Phys. Rev. Lett. 108 046601
[50] Isaev L, Agterberg D F and Vekhter I 2012 Phys. Rev. B 85 081107
[51] Fujimoto S 2008 Phys. Rev. B 77 220501
[52] Zhang C W, Tewari S, Lutchyn R M and Sarma S D 2008 Phys. Rev. Lett. 101 160401
[53] Alicea J 2010 Phys. Rev. B 81 125318
[54] Alicea J 2012 Rep. Prog. Phys. 75 076501
[55] Malecki J 2007 J. Statist. Phys. 129 741
[1] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[2] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[3] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[4] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[5] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[6] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[7] Voltage-controlled Kosterlitz-Thouless transitions and various kinds of Kondo behaviors in a triple dot device
Yong-Chen Xiong(熊永臣), Jun Zhang(张俊), Wang-Huai Zhou(周望怀), Amel Laref. Chin. Phys. B, 2017, 26(9): 097102.
[8] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
[9] Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces
Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096801.
[10] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[11] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[12] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[13] Spin-dependent transport through an interacting quantum dot system
Huang Rui (黄睿), Wu Shao-Quan (吴绍全), Yan Cong-Hua (闫从华). Chin. Phys. B, 2010, 19(7): 077302.
[14] Kondo transport through a quantum dot coupled with side quantum-dot structures
Jiang Zhao-Tan(江兆潭). Chin. Phys. B, 2010, 19(7): 077307.
[15] Magnetotransport through an Aharonov-Bohm ring with parallel double quantum dots coupled to ferromagnetic leads
Wu Shao-Quan(吴绍全), Hou Tao(侯涛), Zhao Guo-Ping(赵国平), and Yu Wan-Lun(余万伦). Chin. Phys. B, 2010, 19(4): 047202.
No Suggested Reading articles found!