CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface |
Wei-Min Jiang(姜伟民)1,†, Qiang Zhao(赵强)1,†, Jing-Zhuo Ling(凌靖卓)1, Ting-Na Shao(邵婷娜)1, Zi-Tao Zhang(张子涛)1, Ming-Rui Liu(刘明睿)2, Chun-Li Yao(姚春丽)1, Yu-Jie Qiao(乔宇杰)1, Mei-Hui Chen(陈美慧)1, Xing-Yu Chen(陈星宇)1, Rui-Fen Dou(窦瑞芬)1,‡, Chang-Min Xiong(熊昌民)1,§, and Jia-Cai Nie(聂家财)1,¶ |
1 Department of Physics, Beijing Normal University, Beijing 100875, China; 2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract High mobility quasi two-dimensional electron gas (2DEG) found at the CaZrO3/SrTiO3 nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics. Here we report that the carrier density and mobility at low temperature can be tuned by gate voltage at the CaZrO3/SrTiO3 interface. Furthermore, the magnitude of Rashba spin-orbit interaction can be modulated and increases with the gate voltage. Remarkably, the diffusion constant and the spin-orbit relaxation time can be strongly tuned by gate voltage. The diffusion constant increases by a factor of ~ 19.98 and the relaxation time is reduced by a factor of over three orders of magnitude while the gate voltage is swept from -50 V to 100 V. These findings not only lay a foundation for further understanding the underlying mechanism of Rashba spin-orbit coupling, but also have great significance in developing various oxide functional devices.
|
Received: 15 December 2021
Revised: 28 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
68.47.Gh
|
(Oxide surfaces)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 92065110, 11974048, and 12074334). |
Corresponding Authors:
Rui-Fen Dou, Chang-Min Xiong, Jia-Cai Nie
E-mail: ruifendou@bnu.edu.cn;cmxiong@bnu.edu.cn;jcnie@bnu.edu.cn
|
Cite this article:
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财) Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface 2022 Chin. Phys. B 31 066801
|
[1] Wang Y X 2009 Chin. Phys. Lett. 26 016801 [2] Chen X L, Chen L, Zhou Z X and Zhao Y 2018 Acta Phys. Sin. 67 118401 (in Chinese) [3] Panahi N, Hosseinnejad M T, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802 [4] Shen S C, Hong Y P, Li C J, Xue H X, Wang X X and Nie J C 2016 Chin. Phys. B 25 076802 [5] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189 [6] Wei S Y, Wang Z G and Yang Z X 2007 Chin. Phys. Lett. 24 800 [7] Moetakef P, Williams J R, Ouellette D G, Kajdos A P, GoldhaberGordon D, Allen S J and Stemmer S 2012 Phys. Rev. X 2 021014 [8] Wang F N, Li J C, Zhang X M, Liu H Z, Liu J, Wang C L, Zhao M L, Su W B and Mei L M 2017 Chin. Phys. B 26 037101 [9] Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101 [10] Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116 [11] Ohtomo A and Hwang H Y 2004 Nature 427 423 [12] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802 [13] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767 [14] Reyren N, Gariglio S, Caviglia A D, Jaccard D, Schneider T and Triscone J M 2009 Appl. Phys. Lett. 94 112506 [15] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 [16] Yin C H, Seiler P, Tang L M K, Leermakers I, Lebedev N, Zeitler U and Aarts J 2020 Phys. Rev. B 101 245114 [17] Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601 [18] Chen Y Z, Bovet N, Kasama T, Gao W W, Yazdi S, Ma C, Pryds N and Linderoth S 2014 Adv. Mater. 26 1462 [19] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buechner B, Shen B G, Linderoth S and Pryds N A 2013 Nat. Commun. 4 1371 [20] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111 [21] Shibuya K, Ohnishi T, Lippmaa M and Oshima M 2007 Appl. Phys. Lett. 91 232106 [22] Lee S W, Liu Y, Heo J and Gordon R G 2012 Nano Lett. 12 4775 [23] Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407 [24] Li. D F, Wang Y and Dai J Y 2011 Appl. Phys. Lett. 98 122108 [25] Chen Y, Trier F, Kasama T, Christensen D V, Bovet N, Balogh Z I, Li H, Thyden K T S, Zhang W, Yazdi S, Norby P, Pryds N and Linderoth S 2015 Nano Lett. 15 1849 [26] Niu W, Chen Y D, Gan Y L, Zhang Y, Zhang X Q, Yuan X, Cao Z, Liu W Q, Xu Y B, Zhang R, Pryds N, Chen Y Z, Pu Y and Wang X F 2019 Appl. Phys. Lett. 115 061601 [27] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R and Xie Y W 2021 Science 372 721 [28] Hurand S, Jouan A, Feuillet-Palma C, Singh G, Biscaras J, Lesne E, Reyren N, Barthélémy A, Bibes M, Villegas J E, Ulysse C, Lafosse X, Pannetier-Lecoeur M, Caprara S, Grilli M, Lesueur J and Bergeal N 2015 Sci. Rep. 5 12751 [29] Singh G, Jouan A, Hurand S, Feuillet-Palma C, Kumar P, Dogra A, Budhani R, Lesueur J and Bergeal N 2017 Phys. Rev. B 96 024509 [30] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhés S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Févre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature 469 189 [31] Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1129 [32] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J M 2010 Phys. Rev. Lett. 104 126803 [33] Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquez J, Varela M, Scigaj M, Dix N, Sanchez F and Fontcuberta J 2015 Nat. Commun. 6 6028 [34] Das S, Hossain Z and Budhani R C 2016 Phys. Rev. B 94 115165 [35] Niu W, Zhang Y, Gan Y L, Christensen D V, Soosten M V, Garcia-Suarez E J, Riisager A, Wang X F, Xu Y B, Zhang R, Pryds N and Chen Y Z 2017 Nano Lett. 17 6878 [36] Yang X, Li X M, Li Y, Li Y, Sun R, Liu J N, Bai X D, Li N, Xie Z K, Su L, Gong Z Z, Zhang X Q, He W and Cheng Z H 2021 Nano Lett. 21 77 [37] Scigaj M, Gazquez J, Varela M, Fontcuberta J, Herranz G and Sanchez F 2015 Solid State Ionics. 281 68 [38] Lee S W, Liu Y Q, Heo J and Gordon R G 2012 Nano Lett 12 4775 [39] Lamari S 2002 Physica E 12 435 [40] Vaz D C, Trier F, Dyrdal A, Johansson A, Garcia K, Barthelemy A, Mertig I, Barnas J, Fert A and Bibes M 2020 Phys. Rev. Mater. 4 071001 [41] D'yakonov M I and Perel' V I 1972 Sov. Phys. Solid State 13 3023 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|