Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066801    DOI: 10.1088/1674-1056/ac5396
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface

Wei-Min Jiang(姜伟民)1,†, Qiang Zhao(赵强)1,†, Jing-Zhuo Ling(凌靖卓)1, Ting-Na Shao(邵婷娜)1, Zi-Tao Zhang(张子涛)1, Ming-Rui Liu(刘明睿)2, Chun-Li Yao(姚春丽)1, Yu-Jie Qiao(乔宇杰)1, Mei-Hui Chen(陈美慧)1, Xing-Yu Chen(陈星宇)1, Rui-Fen Dou(窦瑞芬)1,‡, Chang-Min Xiong(熊昌民)1,§, and Jia-Cai Nie(聂家财)1,¶
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  High mobility quasi two-dimensional electron gas (2DEG) found at the CaZrO3/SrTiO3 nonpolar heterointerface is attractive and provides a platform for the development of functional devices and nanoelectronics. Here we report that the carrier density and mobility at low temperature can be tuned by gate voltage at the CaZrO3/SrTiO3 interface. Furthermore, the magnitude of Rashba spin-orbit interaction can be modulated and increases with the gate voltage. Remarkably, the diffusion constant and the spin-orbit relaxation time can be strongly tuned by gate voltage. The diffusion constant increases by a factor of ~ 19.98 and the relaxation time is reduced by a factor of over three orders of magnitude while the gate voltage is swept from -50 V to 100 V. These findings not only lay a foundation for further understanding the underlying mechanism of Rashba spin-orbit coupling, but also have great significance in developing various oxide functional devices.
Keywords:  CaZrO3/SrTiO3      2DEG      Rashba spin-orbit coupling      gate voltage  
Received:  15 December 2021      Revised:  28 January 2022      Accepted manuscript online:  10 February 2022
PACS:  68.47.Gh (Oxide surfaces)  
  73.20.-r (Electron states at surfaces and interfaces)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 92065110, 11974048, and 12074334).
Corresponding Authors:  Rui-Fen Dou, Chang-Min Xiong, Jia-Cai Nie     E-mail:  ruifendou@bnu.edu.cn;cmxiong@bnu.edu.cn;jcnie@bnu.edu.cn

Cite this article: 

Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财) Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface 2022 Chin. Phys. B 31 066801

[1] Wang Y X 2009 Chin. Phys. Lett. 26 016801
[2] Chen X L, Chen L, Zhou Z X and Zhao Y 2018 Acta Phys. Sin. 67 118401 (in Chinese)
[3] Panahi N, Hosseinnejad M T, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802
[4] Shen S C, Hong Y P, Li C J, Xue H X, Wang X X and Nie J C 2016 Chin. Phys. B 25 076802
[5] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189
[6] Wei S Y, Wang Z G and Yang Z X 2007 Chin. Phys. Lett. 24 800
[7] Moetakef P, Williams J R, Ouellette D G, Kajdos A P, GoldhaberGordon D, Allen S J and Stemmer S 2012 Phys. Rev. X 2 021014
[8] Wang F N, Li J C, Zhang X M, Liu H Z, Liu J, Wang C L, Zhao M L, Su W B and Mei L M 2017 Chin. Phys. B 26 037101
[9] Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
[10] Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116
[11] Ohtomo A and Hwang H Y 2004 Nature 427 423
[12] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
[13] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
[14] Reyren N, Gariglio S, Caviglia A D, Jaccard D, Schneider T and Triscone J M 2009 Appl. Phys. Lett. 94 112506
[15] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[16] Yin C H, Seiler P, Tang L M K, Leermakers I, Lebedev N, Zeitler U and Aarts J 2020 Phys. Rev. B 101 245114
[17] Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601
[18] Chen Y Z, Bovet N, Kasama T, Gao W W, Yazdi S, Ma C, Pryds N and Linderoth S 2014 Adv. Mater. 26 1462
[19] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Buechner B, Shen B G, Linderoth S and Pryds N A 2013 Nat. Commun. 4 1371
[20] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marré D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
[21] Shibuya K, Ohnishi T, Lippmaa M and Oshima M 2007 Appl. Phys. Lett. 91 232106
[22] Lee S W, Liu Y, Heo J and Gordon R G 2012 Nano Lett. 12 4775
[23] Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407
[24] Li. D F, Wang Y and Dai J Y 2011 Appl. Phys. Lett. 98 122108
[25] Chen Y, Trier F, Kasama T, Christensen D V, Bovet N, Balogh Z I, Li H, Thyden K T S, Zhang W, Yazdi S, Norby P, Pryds N and Linderoth S 2015 Nano Lett. 15 1849
[26] Niu W, Chen Y D, Gan Y L, Zhang Y, Zhang X Q, Yuan X, Cao Z, Liu W Q, Xu Y B, Zhang R, Pryds N, Chen Y Z, Pu Y and Wang X F 2019 Appl. Phys. Lett. 115 061601
[27] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R and Xie Y W 2021 Science 372 721
[28] Hurand S, Jouan A, Feuillet-Palma C, Singh G, Biscaras J, Lesne E, Reyren N, Barthélémy A, Bibes M, Villegas J E, Ulysse C, Lafosse X, Pannetier-Lecoeur M, Caprara S, Grilli M, Lesueur J and Bergeal N 2015 Sci. Rep. 5 12751
[29] Singh G, Jouan A, Hurand S, Feuillet-Palma C, Kumar P, Dogra A, Budhani R, Lesueur J and Bergeal N 2017 Phys. Rev. B 96 024509
[30] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhés S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Févre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature 469 189
[31] Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1129
[32] Caviglia A D, Gabay M, Gariglio S, Reyren N, Cancellieri C and Triscone J M 2010 Phys. Rev. Lett. 104 126803
[33] Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquez J, Varela M, Scigaj M, Dix N, Sanchez F and Fontcuberta J 2015 Nat. Commun. 6 6028
[34] Das S, Hossain Z and Budhani R C 2016 Phys. Rev. B 94 115165
[35] Niu W, Zhang Y, Gan Y L, Christensen D V, Soosten M V, Garcia-Suarez E J, Riisager A, Wang X F, Xu Y B, Zhang R, Pryds N and Chen Y Z 2017 Nano Lett. 17 6878
[36] Yang X, Li X M, Li Y, Li Y, Sun R, Liu J N, Bai X D, Li N, Xie Z K, Su L, Gong Z Z, Zhang X Q, He W and Cheng Z H 2021 Nano Lett. 21 77
[37] Scigaj M, Gazquez J, Varela M, Fontcuberta J, Herranz G and Sanchez F 2015 Solid State Ionics. 281 68
[38] Lee S W, Liu Y Q, Heo J and Gordon R G 2012 Nano Lett 12 4775
[39] Lamari S 2002 Physica E 12 435
[40] Vaz D C, Trier F, Dyrdal A, Johansson A, Garcia K, Barthelemy A, Mertig I, Barnas J, Fert A and Bibes M 2020 Phys. Rev. Mater. 4 071001
[41] D'yakonov M I and Perel' V I 1972 Sov. Phys. Solid State 13 3023
[1] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[2] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[3] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[4] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[5] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[6] Prediction of high-mobility two-dimensional electron gas at KTaO3-based heterointerfaces
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Yi Li(李宜), Xin-Miao Zhang(张鑫淼), Xue-Jin Wang(王学晋), Yu-Fei Chen(陈宇飞), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Liang-Mo Mei(梅良模). Chin. Phys. B, 2019, 28(4): 047101.
[7] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[8] Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer
Jiyuan Bai(白继元), Li Li(李立), Zelong He(贺泽龙), Shujiang Ye(叶树江), Shujun Zhao(赵树军), Suihu Dang(党随虎), Weimin Sun(孙伟民). Chin. Phys. B, 2017, 26(11): 117302.
[9] High performance photodetectors based on high quality InP nanowires
Yan-Kun Yang(杨燕琨), Tie-Feng Yang(杨铁锋), Hong-Lai Li(李洪来), Zhao-Yang Qi(祁朝阳), Xin-Liang Chen(陈新亮), Wen-Qiang Wu(吴文强), Xue-Lu Hu(胡学鹿), Peng-Bin He(贺鹏斌), Ying Jiang(蒋英), Wei Hu(胡伟), Qing-Lin Zhang(张清林), Xiu-Juan Zhuang(庄秀娟), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练). Chin. Phys. B, 2016, 25(11): 118106.
[10] Phase diagram and collective modes in Rashba spin–orbit coupled BEC: Effect of in-plane magnetic field
Dong Dong (董冬), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿). Chin. Phys. B, 2015, 24(7): 076701.
[11] Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(3): 037301.
[12] Effects of GaN cap layer thickness on an AlN/GaN heterostructure
Zhao Jing-Tao (赵景涛), Lin Zhao-Jun (林兆军), Luan Chong-Biao (栾崇彪), Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志宏), Yang Ming (杨铭). Chin. Phys. B, 2014, 23(12): 127104.
[13] A comparison of the transport properties of bilayer graphene, monolayer graphene, and two-dimensional electron gas
Sun Li-Feng (孙立风), Dong Li-Min (董利民), Wu Zhi-Fang (吴志芳), Fang Chao (房超). Chin. Phys. B, 2013, 22(7): 077201.
[14] High-mobility two-dimensional electron gases at oxide interfaces:Origin and opportunities
Chen Yun-Zhong (陈允忠), Nini Pryds, Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根), Søren Linderoth. Chin. Phys. B, 2013, 22(11): 116803.
[15] Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation
Zhang Xue-Feng (张雪锋), Wang Li (王莉), Liu Jie (刘杰), Wei Lai (魏崃), Xu Jian (许键). Chin. Phys. B, 2013, 22(1): 017202.
No Suggested Reading articles found!