Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017102    DOI: 10.1088/1674-1056/ac11dc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

SU(3) spin-orbit coupled fermions in an optical lattice

Xiaofan Zhou(周晓凡)1,2,†, Gang Chen(陈刚)1,2,3, and Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  We propose a scheme to realize the SU(3) spin-orbit coupled three-component fermions in an one-dimensional optical lattice. The topological properties of the single-particle Hamiltonian are studied by calculating the Berry phase, winding number and edge state. We also investigate the effects of the interaction on the ground-state topology of the system, and characterize the interaction-induced topological phase transitions, using a state-of-the-art density-matrix renormalization-group numerical method. Finally, we show the typical features of the emerging quantum phases, and map out the many-body phase diagram between the interaction and the Zeeman field. Our results establish a way for exploring novel quantum physics induced by the SOC with SU(N) symmetry.
Keywords:  spin-orbit coupling      topological phase transition      optical lattice  
Received:  19 April 2021      Revised:  23 June 2021      Accepted manuscript online:  07 July 2021
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  64.70.Tg (Quantum phase transitions)  
  37.10.Jk (Atoms in optical lattices)  
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the Natural National Science Foundation of China (Grant Nos. 11674200, 12074232, and 12004230), the Fund for Shanxi ‘1331 Project’ Key Subjects Construction, and Research Project Supported by Shanxi Scholarship Council of China.
Corresponding Authors:  Xiaofan Zhou     E-mail:  zhouxiaofan@sxu.edu.cn

Cite this article: 

Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂) SU(3) spin-orbit coupled fermions in an optical lattice 2022 Chin. Phys. B 31 017102

[1] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[2] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, L W Molenkamp, Qi X L, Zhang S C 2007 Science 318 766
[3] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[4] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[5] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, and Hasan M Z 2008 Nature 452 970
[6] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[7] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[8] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[9] Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
[10] Wang P Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[11] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsa T h, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[12] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[13] Qu C, Hamner C, Gong M, Zhang C and Engels P 2013 Phys. Rev. A 88 021604
[14] Fu Z, Huang L, Meng Z, Wang P, Zhang L, Zhang S, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110
[15] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
[16] Olson A J, Wang S J, Niffenegger R J, Li C H, Greene C H and Chen Y P 2014 Phys. Rev. A 90 013616
[17] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[18] Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P and Zhang J 2016 Phys. Rev. Lett. 117 235304
[19] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[20] Sun W, Wang B Z, Xu X T, Yi C R, Zhang L, Wu Z, Deng Y, Liu X J, Chen S and Pan J W 2018 Phys. Rev. Lett. 121 150401
[21] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y Hui, Yi C R, Niu S, Deng Y, Liu X J, Chen S and Pan J W 2021 Science 372 271
[22] Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M and Fallani L 2015 Science 349 1510
[23] Stuhl B K, Lu H I, Aycock L M, Genkina D and Spielman I B 2015 Science 349 1514
[24] Zhou X, Pan J S, Yi W, Chen G and Jia S 2017 Phys. Rev. A 96 023627
[25] Yan Y, Zhang S.-L, Choudhury S and Zhou Q 2019 Phys. Rev. Lett. 123 260405
[26] Anderson R P, Trypogeorgos D, Valdès-Curiel A, Liang Q Y, Tao J, Zhao M, Andrijauskas T, Juzeliunas G and Spielman I B 2020 Phys. Rev. Research 2 013149
[27] Liu X J, Liu Z X and Cheng M 2013 Phys. Rev. Lett. 110 076401
[28] Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeliǔnas G and Lewenstein M 2014 Phys. Rev. Lett. 112 043001
[29] Zhai H 2015 Rep. Prog. Phys. 78 026001
[30] Livi L F, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M and Fallani L 2016 Phys. Rev. Lett. 117 220401
[31] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J and Rey A M 2016 Phys. Rev. Lett. 116 035301
[32] Zhou X, Pan J S, Liu Z X, Zhang W, Yi W, Chen G and Jia S 2017 Phys. Rev. Lett. 119 185701
[33] Campbell D L, Price R M, Putra A, Valdès-Curiel A, Trypogeorgos D and Spielman I B 2016 Nat. Commun. 7 10897
[34] Luo X, Wu L, Chen J, Guan Q, Gao K, Xu Z F, You L and Wang R 2016 Sci. Rep. 6 18983
[35] Lan Z. and Öhberg P 2014 Phys. Rev. A 89 023630
[36] Martone G I, Pepe F V, Facchi P, Pascazio S and Stringari S 2016 Phys. Rev. Lett. 117 125301
[37] Natu S S, Li X P and Cole W S 2015 Phys. Rev. A 91 023608
[38] Pixley J H, Natu Stefan S, Spielman I B and Das Sarma S 2016 Phys. Rev. B 93 081101
[39] Sun K, Qu C L, Xu Y, Zhang Y P and Zhang C W 2016 Phys. Rev. A 93 023615
[40] Yu Z Q 2016 Phys. Rev. A 93 033648
[41] Barnett R, Boyd G R, and Galitski V 2012 Phys. Rev. Lett. 109 235308
[42] Graß T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[43] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[44] Han J H, Kang J H and Shin Y 2019 Phys. Rev. Lett. 122 065303
[45] Zhou X, Chen G and Jia S 2020 Phys. Rev. A 102 043313
[46] White S R 1992 Phys. Rev. Lett. 69 2863
[47] Schollwök U 2005 Rev. Mod. Phys. 77 259
[48] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[49] Bergeman T, Moore G M and Olshanii M 2003 Phys. Rev. Lett. 91 163201
[50] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142
[51] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[52] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[53] Ludwig A W W 2016 Phys. Scr. T168 014001
[54] Morimoto T, Furusaki A and Mudry C 2015 Phys. Rev. B 92 125104
[55] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[56] Zak J 1989 Phys. Rev. Lett. 62 2747
[57] Lang L J, Zhang S L and Zhou Q 2017 Phys. Rev. A 95 053615
[58] Zhao J Z, Hu S J and Zhang P 2015 Phys. Rev. Lett. 115 195302
[59] Yoshida T, Peters R, FujimotoS and Kawakami N 2014 Phys. Rev. Lett. 112 196404
[60] Turner A. M, Pollmann F and Berg E 2011 Phys. Rev. B 83 075102
[61] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
[62] Fidkowski L 2010 Phys. Rev. Lett. 104 130502
[63] Flammia S T, A Hamma, Hughes T L and Wen X G 2009 Phys. Rev. Lett. 103 261601
[64] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[65] Hastings M B, González I, Kallin A B and Melko R G 2010 Phys. Rev. Lett. 104 157201
[66] Daley A J, Pichler H, Schachenmayer J and Zoller P 2012 Phys. Rev. Lett. 109 020505
[67] Abanin D A and Demler E 2012 Phys. Rev. Lett. 109 020504
[68] Jiang H C, Wang Z H and Balents L 2012 Nat. Phys. 8 902
[69] Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
[70] Parsons M F, Mazurenko A, Chiu C. S, Ji G, Greif D and Greiner M 2016 Science 353 1253
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[8] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[13] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[14] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[15] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
No Suggested Reading articles found!