Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126804    DOI: 10.1088/1674-1056/ac2e63
RAPID COMMUNICATION Prev   Next  

Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate

S Lu(卢帅)1,2,†, K Peng(彭坤)1,2,†, P D Wang(王鹏栋)2,†, A X Chen(陈爱喜)2, W Ren(任伟)2,5, X W Fang(方鑫伟)2,5, Y Wu(伍莹)2, Z Y Li(李治云)2, H F Li(李慧芳)2,3, F Y Cheng(程飞宇)2, K L Xiong(熊康林)2, J Y Yang(杨继勇)4, J Z Wang(王俊忠)4, S A Ding(丁孙安)2,5, Y P Jiang(蒋烨平)3, L Wang(王利)2,‡, Q Li(李青)1,§, F S Li(李坊森)2,5,¶, and L F Chi(迟力峰)1
1 Institute of Functional Nano & Soft Materials(FUNSOM), Soochow University, Suzhou 215123, China;
2 Vacuum Interconnected Nanotech Workstation(Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China;
3 Key Laboratory of Polar Materials and Devices(MOE), Department of Electronic, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
4 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
5 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Abstract  Monolayer MnTe2 stabilized as 1T structure has been theoretically predicted to be a two-dimensional (2D) ferromagnetic metal and can be tuned via strain engineering. There is no naturally van der Waals (vdW) layered MnTe2 bulk, leaving mechanical exfoliation impossible to prepare monolayer MnTe2. Herein, by means of molecular beam epitaxy (MBE), we successfully prepared monolayer hexagonal MnTe2 on Si(111) under Te rich condition. Sharp reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED) patterns suggest the monolayer is atomically flat without surface reconstruction. The valence state of Mn4+ and the atom ratio of ([Te]:[Mn]) further confirm the MnTe2 compound. Scanning tunneling spectroscopy (STS) shows the hexagonal MnTe2 monolayer is a semiconductor with a large bandgap of ~2.78 eV. The valence-band maximum (VBM) locates at the Γ point, as illustrated by angle-resolved photoemission spectroscopy (ARPES), below which three hole-type bands with parabolic dispersion can be identified. The successful synthesis of monolayer MnTe2 film provides a new platform to investigate the 2D magnetism.
Keywords:  molecular beam epitaxy      hexagonal MnTe2      band structure  
Received:  23 August 2021      Revised:  04 October 2021      Accepted manuscript online:  11 October 2021
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604366, 11634007, 21872099, and 22072102) and the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397). F. S. L. acknowledges support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017370).
Corresponding Authors:  L Wang, Q Li, F S Li     E-mail:  lwang2017@sinano.ac.cn;liqing@suda.edu.cn;liqing@suda.edu.cn

Cite this article: 

S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰) Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate 2021 Chin. Phys. B 30 126804

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[3] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[4] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T and Liu Z 2017 Nat. Commun. 8 394
[5] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92
[6] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S J, Jiang J, Liou F, Kahn S, Jia C H, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2018 Nano Lett. 18 689
[7] Zhang D M, Ha J, Baek H, Chan Y H, Natterer F D, Myers A F, Schumacher J D, Cullen W G, Davydov A V, Kuk Y, Chou M Y, Zhitenev N B and Stroscio J A 2017 Phys. Rev. Mater. 1 024005
[8] Zelezny J, Wadley P, Olejnik K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220
[9] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
[10] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
[11] Mong R S K and Moore J E 2019 Nature 576 390
[12] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878
[13] Xu Y D, Li W, Wang C, Li J, Chen Z W, Lin S Q, Chen Y and Pei Y Z 2017 J. Mater. Chem. A 5 19143
[14] Walther K 1967 Solid State Commun. 5 399
[15] Mori S, Sutou Y, Ando D and Koike J 2018 Mater. Trans. 59 1506
[16] Kriegner D, Vyborny K, Olejnik K, Reichlova H, Novak V, Marti X, Gazquez J, Saidl V, Nemec P, Volobuev V V, Springholz G, Holy V and Jungwirth T 2016 Nat. Commun. 7 11623
[17] Mu S, Hermann R P, Gorsse S, Zhao H Z, Manley M E, Fishman R S and Lindsay L 2019 Phys. Rev. Mater. 3 025403
[18] Szuszkiewicz W, Dynowska E, Witkowska B and Hennion B 2006 Phys. Rev. B 73 104403
[19] Kim W, Park I J, Kim H J, Lee W, Kim S J and Kim C S 2009 IEEE Trans. Magn. 45 2424
[20] Hastings J M, Elliott N and Corliss L. M 1959 Phys. Rev. 115 13
[21] Xu Y D, Li W, Wang C, Chen Z W, Wu Y X, Zhang X Y, Li J Q, Lin S, Chen Y and Pei Y Z 2018 J. Materiomics 4 215
[22] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[23] Li H F, Chen A X, Wang L, Ren W, Lu S, Yang B J, Jiang Y P and Li F S 2020 Appl. Phys. Lett. 117 161601
[24] Chen W, Hu M L, Zong J Y, Xie X D, Meng Q H, Yu F, Wang L, Ren W, Chen A X, Liu G, Xi X X, Li F S, Sun J, Liu J W and Zhang Y 2021 Adv. Mater. 33 2004930
[25] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R and Smart R S 2011 Appl. Surf. Sci. 257 2717
[26] Iwanowski R J, Heinonen M H and Witkowska B 2010 J. Alloys Compd. 491 13
[27] Jiao F, Wang J, Wang X, Tian Q, Chang M, Cai L, Zhu S, Zhang D, Lu Q, Wang C, Tan S, Li Y, Jing Q, Liu B and Qian D 2021 J. Supercond. Nov. Magn. 34 1485
[28] Li H, Liu S S, Liu C, Zhang J S, Xu Y, Yu R, Wu Y, Zhang Y G and Fan S S 2020 Phys. Chem. Chem. Phys. 22 556
[29] Lupke F, Dolezal J, Cherepanov V, Ostadal I, Tautz F S and Voigtlander B 2019 Surf. Sci. 681 130
[30] Liu H W, Yuan H T, Fukui N, Zhang L, Jia J F, Iwasa Y, Chen M W, Hashizume T, Sakurai T and Xue Q K 2010 Cryst. Growth Des. 10 4491
[31] Yin G, Yu J X, Liu Y Z, Lake R K, Zang J D and Wang K L 2019 Phys. Rev. Lett. 122 106602
[32] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Phys. Chem. Solids 143 109489
[33] Sheverdyaeva P M, Mahatha S K, Ronci F, Colonna S, Moras P, Satta M and Flammini R 2017 J. Phys. Condes. Matter 29 215001
[34] Zhang J Y, Lian Q, Pan Z Q, Bai W, Yang J, Zhang Y Y, Tang X D and Chu J H 2020 J. Raman Spectrosc. 51 1383
[1] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[2] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[3] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[4] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[5] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[6] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[7] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[8] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[9] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[10] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[11] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[12] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[13] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[14] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[15] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
No Suggested Reading articles found!