Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077304    DOI: 10.1088/1674-1056/abf345
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon

Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾)
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  Organic/inorganic hybrid van der Waals heterostructure with an atomically abrupt interface has attracted great research interests within the field of multifunctional electronic and optoelectronic devices. The integration of organic rubrene films with inorganic Si semiconductors can avoid the atomic mutual-diffusion at the interface, and provide the possibility of forming two-dimensional van der Waals heterojunction accompanied with the type-Ⅱ energy band alignment, due to the transfer behaviors of majority carriers at the interface. In this study, the high-quality rubrene/Si van der Waals heterostructure with an electronically abrupt junction was prepared, and a self-powered photodetector was then constructed based on this hybrid heterojunction. The photodetector demonstrated an excellent switching response to the 1064 nm monochromatic light with large on/off current ratio of 7.0×103, the maximum photocurrent of 14.62 mA, the maximum responsivity of 2.07 A/W, the maximum detectivity of 2.9×1011 Jones, and a fast response time of 13.0 μs. This study offers important guidance for preparing high-quality rubrene/Si hybrid van der Waals heterostructure with desirable band alignment, and the designed heterojunction photodetector has an important application prospect in the field of multifunctional optoelectronics.
Keywords:  rubrene      van der Waals heterojunction      photodetector      band alignment  
Received:  03 March 2021      Revised:  18 March 2021      Accepted manuscript online:  30 March 2021
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.05.Fb (Organic semiconductors)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604228, 11774208, and 11974222), the Science and Technology Planning Foundation of Shandong Province, China (Grant No. J18KA219).
Corresponding Authors:  Hongbin Zhang     E-mail:  hbzhang@sdnu.edu.cn

Cite this article: 

Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾) High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon 2021 Chin. Phys. B 30 077304

[1] Yang T F, Wang X and Zheng B Y 2019 ACS Nano 13 7996
[2] Hu W and Yang J L 2017 J. Mater. Chem. C 5 12289
[3] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K and Li Z L 2019 Phys. Lett. A 383 867
[4] Shin G H, Park C, Lee K J, Jin H J and Choi S Y 2020 Nano Lett. 20 5741
[5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[6] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H and Lee Y H 2019 Adv. Mater. 31 1807075
[7] Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101
[8] Gobbi M, Orgiu E and Samori P 2018 Adv. Mater. 30 1706103
[9] He D W, Pan Y M, Nan H Y, Gu S, Yang Z Y, Wu B, Luo X G, Xu B C, Zhang Y H, Li Y, Ni Z H, Wang B G, Zhu J, Chai Y, Shi Y and Wang X R 2015 Appl. Phys. Lett. 107 183103
[10] Liu Y, Huang Y and Duan X F 2019 Nature 567 323
[11] Wu F, Xia H, Sun H D, Zhang J W, Gong F, Wang Z, Chen L, Wang P, Long M S, Wu X, Wang J L, Ren W C, Chen X S, Lu W and Hu W D 2019 Adv. Funct. Mater. 29 1900314
[12] Zheng W H, Zheng B Y and Jiang Y et al. 2019 Nano Lett. 19 7217
[13] Zhang L L, Sharma A, Zhu Y, Zhang Y H, Wang B W, Dong M H, Nguyen H T, Wang Z, Wen B, Cao Y J, Liu B Q, Sun X Q, Yang J, Li Z Y, Kar A, Shi Y, Macdonald D, Yu Z F, Wang X R and Lu Y R 2018 Adv. Mater. 30 1803986
[14] Bellus M Z, Li M, Lane S D, Ceballos F, Cui Q N, Zeng X C and Zhao H 2017 Nanoscale Horiz. 2 31
[15] Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K and Dai N 2016 ACS Nano 10 3852
[16] Wang Y J, Wang L, Liu F J, Peng Z H, Zhang Y D and Jiang C 2020 Org. Electron. 83 105778
[17] Sun J, Choi Y, Choi Y J, Kim S, Park J H, Lee S and Cho J H 2019 Adv. Mater. 31 1803831
[18] Zhu L B, Lu L, Wang H Y, Fan G C, Chen Y T, Zhang J D and Zhao W W 2019 Biosens. Bioelectron. 140 111349
[19] Borges-González J, Kousseff C J and Nielsen C B 2019 J. Mater. Chem. C 7 1111
[20] Fahlman M, Fabiano S, Gueskine V, Simon D, Berggren M and Crispin X 2019 Nat. Rev. Mater. 4 627
[21] Li D, Dong G F, Li W Z and Wang L D 2015 Sci. Rep. 5 07902
[22] Wu Y L, Fukuda K, Yokota T and Someya T 2019 Adv. Mater. 31 1903687
[23] Fusella M A, Schreiber F, Abbasi K, Kim J J, Briseno A L and Rand B P 2017 Nano Lett. 17 3040
[24] Reyes-Martinez M A, Ramasubramaniam A, Briseno A L and Crosby A J 2012 Adv. Mater. 24 5548
[25] Chung S J, McHugh C J and Calvo-Castro J 2019 J. Mater. Chem. C 7 2029
[26] Irkhin P, Ryasnyanskiy A, Koehler M and Biaggio I 2012 Phys. Rev. B 86 085143
[27] Gogoi D, Hussain A A, Biswasi S and Pal A R 2020 J. Mater. Chem. C 8 6450
[28] Zhao Y P, Yu W B and Ouyang G 2018 J. Phys. D: Appl. Phys. 51 015111
[29] Zheng W H, Zheng B Y, Yan C L, Liu Y, Sun X X, Qi Z Y, Yang T F, Jiang Y, Huang W, Fan P, Jiang F, Ji W, Wang X and Pan A L 2019 Adv. Sci. 6 1802204
[30] Udhardt C, Forker R, Gruenewald M, Watanabe Y, Yamada T, Ueba T, Munakata T and Fritz T 2016 Thin Solid Films 598 271
[31] Lin K Y, Wang Y J, Chen K L, Ho C Y, Yang C C, Shen J L and Chiu K C 2017 Sci. Rep. 7 40824
[32] Djuric T, Thierry A, Grogger W, Abd Al-Baqi S M, Sitter H and Resel R 2009 Physica E 41 1718
[33] Wang C H, Islam A K M M, Yang Y W, Wu T Y, Lue J W, Hsu C H, Sinha S and Mukherjee M 2013 Langmuir 29 3957
[34] Zhang P Q, Zeng X H, Deng J C, Huang K, Bao F, Qiu Y X, Xu K and Zhang J P 2010 Jpn. J. Appl. Phys. 49 095501
[35] Singh N, Arish M, Kumar P, Rub A and Riaz U 2020 Sci. Rep. 10 57
[36] Goldie D M and Persheyev S K 2006 J. Mater. Sci. 41 5287
[37] Orduña-Diaz A, Treviño-Palacios C G, Rojas-Lopez M, Delgado-Macuil R, Gayou V L and Torres-Jacome A 2010 Mater. Sci. Eng. B 174 93
[38] Zhou X W, Ishida M, Imanishi A and Nakato Y 2001 J. Phys. Chem. B 105 156
[39] Strauss I, Chakarova K, Mundstock A, Mihaylov M, Hadjiivanov K, Guschanski N and Caro J 2020 Microporous Mesoporous Mater. 302 110227
[40] Uddin A, Lee C B and Wong J 2011 J. Lumin. 131 1037
[41] Goto K, Takayama T, Ohata K, Matsushita K and Akimoto I 2019 J. Lumin. 205 46
[42] Burke F, Stamenov P and Coey J M D 2011 Synth. Met. 161 563
[43] Liu C, Zhang H B, Sun Z, Ding K, Mao J, Shao Z B and Jie J S 2016 J. Mater. Chem. C 4 5648
[44] Xie C, Liu C K, Loi H L and Yan F 2019 Adv. Funct. Mater. 30 1903907
[45] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[46] Chowdhury A M, Chandan G, Pant R, Roul B, Singh D K, Nanda K K and Krupanidhi S B 2019 ACS Appl. Mater. Interfaces 11 33390
[47] Liu B, Tang B, Lv F J, Zeng Y, Liao J H, Wang S and Chen Q 2019 Nanotechnology 31 065203
[48] Liu Q R, Jian L H, Liu R Q, Yang H X, Kong J M and Zhang X J 2020 Chem. Eur. J. A 26 1633
[49] Kielar M, Hamid T, Wiemer M, Windels F, Hirsch L, Sah P and Pandey A K 2019 Adv. Funct. Mater. 30 1907964
[50] Zhu W G, Zhang D Z, Bai S M, Shi Q, Hu W P and Fu H B 2020 Adv. Opt. Mater. 8 2000866
[51] Cho E H, Song W G, Park C J, Kim J, Kim S and Joo J 2015 Nano Res. 8 790
[52] Jones G F, Pinto R M, De Sanctis A, Nagareddy V K, Wright C D, Alves H, Craciun M F and Russo S 2017 Adv. Mater. 29 1702993
[53] Biswasi S and Pal A R 2019 Plasma Chem. Plasma Process. 40 371
[54] Du Q Q, Qin S C, Wang W J, Guo Y Y, Ye J D, Zhu S M, Tang K, Zhang R, Zheng Y D and Gu S L 2019 Nanotechnolgy 30 065202
[55] Huang J, Wang L J, Tang K, Xu R, Zhang J J, Lu X G and Xia Y B 2011 Chin. Phys. Lett. 28 127301
[56] Wang Z K, Naka S and Okada H 2010 Appl. Phys. A 100 1103
[57] He X X, Chow W L, Liu F C, Tay B K and Liu Z 2017 Small 13 1602558
[58] Fan H J, Zhang H Q, Wu J J, Wen Z F and Ma F Y 2011 Chin. Phys. Lett. 28 127305
[59] Zhao Y P and Ouyang G 2019 Sci. Rep. 9 17381
[60] Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X and Yang G W 2014 Sci. Rep. 4 05876
[1] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[2] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[3] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[4] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[5] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[6] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[7] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[8] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[9] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[10] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[11] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[12] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[13] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[14] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[15] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
No Suggested Reading articles found!