Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116701    DOI: 10.1088/1674-1056/abbbe8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap

Qing-Bo Wang(王庆波)1,2, Hui Yang(杨慧)1,3, Ning Su(苏宁)1, and Ling-Hua Wen(文灵华)1, †
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
2 School of Physics and Technology, Tangshan Normal University, Tangshan 063000, China
3 Department of Physics, Xinzhou Teachers University, Xinzhou 034000, China
Abstract  

We investigate the ground-state phases and spin textures of spin–orbit-coupled dipolar pseudo-spin-1/2 Bose–Einstein condensates in a rotating two-dimensional toroidal potential. The combined effects of dipole–dipole interaction (DDI), spin–orbit coupling (SOC), rotation, and interatomic interactions on the ground-state structures and topological defects of the system are analyzed systematically. For fixed SOC strength and rotation frequency, we provide a set of phase diagrams as a function of the DDI strength and the ratio between inter- and intra-species interactions. The system can show rich quantum phases including a half-quantum vortex, symmetrical (asymmetrical) phase with quantum droplets (QDs), asymmetrical segregated phase with hidden vortices (ASH phase), annular condensates with giant vortices, triangular (square) vortex lattice with QDs, and criss-cross vortex string lattice, depending on the competition between DDI and contact interaction. For given DDI strength and rotation frequency, the increase of the SOC strength leads to a structural phase transition from an ASH phase to a tetragonal vortex lattice then to a pentagonal vortex lattice and finally to a vortex necklace, which is also demonstrated by the momentum distributions. Without rotation, the interplay of DDI and SOC may result in the formation of a unique trumpet-shaped Bloch domain wall. In addition, the rotation effect is discussed. Furthermore, the system supports exotic topological excitations, such as a half-skyrmion (meron) string, triangular skyrmion lattice, skyrmion–half-skyrmion lattice, skyrmion–meron cluster, skyrmion–meron layered necklace, skyrmion–giant-skyrmion necklace lattice, and half-skyrmion–half-antiskyrmion necklace.

Keywords:  Bose-Einstein condensate      dipole-dipole interaction      spin-orbit coupling      topological defects  
Received:  29 June 2020      Revised:  17 August 2020      Published:  03 November 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11475144 and 11047033), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019203049 and A2015203037), the University Science and Technology Foundation of Hebei Provincial Department of Education, China (Grant No. Z2017056), Science and Technology Plan Projects of Tangshan City, China (Grant No. 19130220g), and Research Foundation of Yanshan University, China (Grant No. B846).
Corresponding Authors:  Corresponding author. E-mail: linghuawen@ysu.edu.cn   

Cite this article: 

Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华) Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap 2020 Chin. Phys. B 29 116701

Fig. 1.  

The γddδ phase diagram with γdd > 0, Ω = 0.4, and λ = 1.5. There are five different ground-state phases marked by (I)–(V). (I) half-quantum vortex phase (HQV phase), (II) asymmetrical phase with quantum droplets (AQD phase), (III) symmetrical phase with quantum droplets (SQD phase), (IV) asymmetrical segregated phase with hidden vortices (ASH phase), and (V) annular condensates with giant vortices (ACG phase). The unit length is a0.

Fig. 2.  

Density distributions and phase distributions for different repulsive γdd with Ω = 0.4 and λ = 1.5: (a) γdd = 0.5, δ = 1.7, (b) γdd = 0.5, δ = 4, (c) γdd = 0.85, δ = 6, (d) γdd = 0.15, δ = 7.5, and (e) γdd = 0.65, δ = 7.5. The rows from top to bottom represent |ψ1|2, | ψ2|2, argψ1, and argψ2, respectively. The unit length is a0.

Fig. 3.  

The γddδ phase diagram with γdd < 0, Ω = 0.4, and λ = 1.5. There are five different ground-state phases marked by (I)–(V). (I) annular condensates with giant vortices (ACG phase), (II) triangular vortex lattice with quantum droplets (TVD phase), (III) square vortex lattice with quantum droplets (SVD phase), (IV) criss-cross vortex string lattice (CVS phase), and (V) triangular vortex lattice (TVL phase). The unit length is a0.

Fig. 4.  

Density distributions and phase distributions for different attractive γdd with Ω = 0.4 and λ = 1.5: (a) γdd = −3, δ = 7.5, (b) γdd = −6, δ = 4, (c) γdd = −2, δ = 7.5, (d) γdd = −2.5, δ = 7.5, and (e) γdd = −3, δ = 4. The rows from top to bottom represent |ψ1|2, |ψ2|2, arg ψ1, and arg ψ2, respectively. The unit length is a0.

Fig. 5.  

Density distributions and phase distributions for different isotropic SOC strength λ with Ω = 0.8 and γdd = 0.5: (a) λ = 0, δ = 4, (b) λ = 1.5, δ = 4, (c) λ = 2, δ = 4, (d) λ = 3, δ = 4, (e) λ = 2, δ = 7.5, (f) λ = 3, δ = 7.5, (g) λ = 4, δ = 7.5 and (h) λ = 10, δ = 7.5. The rows from top to bottom represent |ψ1|2, |ψ2|2, argψ1, argψ2, and momentum distribution of component 2, respectively.

Fig. 6.  

Ground states of rotating spin-1/2 BECs with SOC and DDI in a toroidal trap, where γdd = 0.5, λ = 2, and δ = 7.5. (a) Ω = 0, (b) Ω = 0.3, (c) Ω = 0.5, (d) Ω = 1, and (e) Ω = 1.4. The rows from left to right represent |ψ1|2, |ψ2|2, arg ψ1, arg ψ2, |ψ1|2 + |ψ2|2, and |ψ1|2 − |ψ2|2, respectively. The unit length is a0.

Fig. 7.  

Density differences and spin densities of rotating spin-1/2 BECs with SOC and DDI in a toroidal trap. The rows from top to bottom denote |ψ1|2−|ψ2|2, Sx, Sy, and Sz, respectively. The corresponding ground states in (a)-(d) are shown in Figs. 2(b), 4(e), 5(a), and 5(d), respectively. The unit length is a0.

Case Ground-state phase
S0D0R0T0 Mixing phase or demixing phase[52]
S0D0R0T1 Quantized persistent flow[34]
S0D0R1T0 Triangular vortex lattice[50]
S0D0R1T1 Giant vortex[22,43]
S0D1R0T0 Rosensweig pattern[2]
S0D1R0T1 Layer-separated symmetry preserving annular structure[53]
S1D0R0T0 Plane-wave phase or stripe phase[14,21]
S1D0R0T1 Necklace state[36]
S0D1R1T0 Half-quantum vortex chain phase[54]
S0D1R1T1 Symmetry broken separated phase
S1D0R1T0 Half-quantum vortex[27]
S1D0R1T1 Vortex necklace with hidden giant vortex and hidden vortex necklaces[22]
S1D1R0T0 Immiscible phase with hidden vortex, or plane-wave phase[55]
S1D1R0T1 Petal-like separated phase with ghost vortices and antivortices in each component
S1D1R1T0 Vortex sheet
S1D1R1T1 Symmetrical (asymmetrical) phase with QDs, vortex lattice with QDs, and criss-cross vortex string lattice, etc
Table 1.  

Typical ground-state phases of two-component BECs.

Fig. 8.  

Topological charge densities and spin textures of spin–orbit-coupled dipolar BECs in a rotating toroidal trap, where the corresponding ground states for (a)–(d) are given in Figs. 2(b), 4(c), 4(d), and 4(e), respectively. The first column (from left to right) represents topological charge density, the second column is spin texture, and the right two columns denote the local amplifications of the spin texture. The red solid square and the red solid circle denote a skyrmion and a half-skyrmion, respectively. The unit length is a0.

Fig. 9.  

Topological charge densities and spin textures of spin–orbit-coupled dipolar BECs in a rotating toroidal trap, where the ground states for (a)–(d) are shown in Figs. 5(a), 5(d), 5(f), and 6(e), respectively. The first column (from left to right) denotes topological charge density, the second column is spin texture, and the right two columns represent the local amplifications of the spin texture. The red solid square, red solid circle, red solid octagon, and blue dotted circle represent a skyrmion, a half-skyrmion, a giant skyrmion, and a half-antiskyrmion, respectively. The unit length is a0.

[1]
Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401 DOI: 10.1088/0034-4885/72/12/126401
[2]
Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253 DOI: 10.1016/j.physrep.2012.07.005
[3]
Santos L, Shlyapnikov G V, Lewenstein M 2003 Phys. Rev. Lett. 90 250403 DOI: 10.1103/PhysRevLett.90.250403
[4]
Deng Y, Cheng J, Jing H, Sun C P, Yi S 2012 Phys. Rev. Lett. 108 125301 DOI: 10.1103/PhysRevLett.108.125301
[5]
Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T 2016 Nature 530 194 DOI: 10.1038/nature16485
[6]
Prasad S B, Bland T, Mulkerin B C, Parker N G, Martin A M 2019 Phys. Rev. A 100 023625 DOI: 10.1103/PhysRevA.100.023625
[7]
Oldziejewski R, Gorecki W, Pawlowski K, Rzazewski K 2020 Phys. Rev. Lett. 124 090401 DOI: 10.1103/PhysRevLett.124.090401
[8]
Lepoutre S, Gabardos L, Kechadi K, Pedri P, Gorceix O, Maréchal E, Vernac L, Laburthe-Tolra B 2018 Phys. Rev. Lett. 121 013201 DOI: 10.1103/PhysRevLett.121.013201
[9]
Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401 DOI: 10.1103/PhysRevLett.107.190401
[10]
Chomaz L, van Bijnen R M W, Petter D, Faraoni G, Baier S, Becher J H, Mark M J, Wächtler F, Santos L, Ferlaino F 2018 Nat. Phys. 14 442 DOI: 10.1038/s41567-018-0054-7
[11]
Christianen A, Zwierlein M W, Groenenboom G C, Karman T 2019 Phys. Rev. Lett. 123 123402 DOI: 10.1103/PhysRevLett.123.123402
[12]
Lin Y J, Jiménez-GarcíaK K, Spielman I B 2011 Nature 471 83 DOI: 10.1038/nature09887
[13]
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 DOI: 10.1103/PhysRevLett.109.095302
[14]
Zhai H 2015 Rep. Prog. Phys. 78 026001 DOI: 10.1088/0034-4885/78/2/026001
[15]
Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039 DOI: 10.1088/0022-3719/17/33/015
[16]
Dresselhaus G 1955 Phys. Rev. 100 580 DOI: 10.1103/PhysRev.100.580
[17]
Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401 DOI: 10.1088/0034-4885/77/12/126401
[18]
Yang H, Wang Q, Su N, Wen L 2019 Eur. Phys. J. Plus 134 589 DOI: 10.1140/epjp/i2019-12988-y
[19]
Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83 DOI: 10.1126/science.aaf6689
[20]
Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540 DOI: 10.1038/nphys3672
[21]
Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302 DOI: 10.1103/PhysRevLett.108.035302
[22]
Wang H, Wen L, Yang H, Shi C, Li J 2017 J. Phys. B 50 155301 DOI: 10.1088/1361-6455/aa7afd
[23]
Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91 DOI: 10.1038/nature21431
[24]
Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614 DOI: 10.1103/PhysRevA.87.013614
[25]
Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401 DOI: 10.1103/PhysRevLett.107.270401
[26]
Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402 DOI: 10.1103/PhysRevLett.108.010402
[27]
Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401 DOI: 10.1103/PhysRevLett.107.200401
[28]
Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624 DOI: 10.1103/PhysRevA.84.063624
[29]
Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616 DOI: 10.1103/PhysRevA.86.053616
[30]
Aftalion A, Mason P 2013 Phys. Rev. A 88 023610 DOI: 10.1103/PhysRevA.88.023610
[31]
Wen L, Xiong H, Wu B 2010 Phys. Rev. A 82 053627 DOI: 10.1103/PhysRevA.82.053627
[32]
Wei Y W, Kong C, Hai W H 2019 Chin. Phys. B 28 056701 http://cpb.iphy.ac.cn/EN/abstract/abstract73922.shtml
[33]
Zhang A X, Zhang Y, Jiang Y F, Yu Z F, Cai L X, Xue J K 2020 Chin. Phys. B 29 010307 http://cpb.iphy.ac.cn/EN/abstract/abstract75194.shtml
[34]
Eckel S, Lee J G, Jendrzejewski F, Murray N, Clark C W, Lobb C J, Phillips W D, Edwards M, Campbell G K 2014 Nature 506 200 DOI: 10.1038/nature12958
[35]
Zhang X F, Kato M, Han W, Zhang S G, Saito H 2017 Phys. Rev. A 95 033620 DOI: 10.1103/PhysRevA.95.033620
[36]
White A C, Zhang Y P, Busch T 2017 Phys. Rev. A 95 041604 DOI: 10.1103/PhysRevA.95.041604
[37]
Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301 in Chinese DOI: 10.7498/aps.69.20200372
[38]
Mason P, Aftalion A 2011 Phys. Rev. A 84 033611 DOI: 10.1103/PhysRevA.84.033611
[39]
Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L 2018 Science 359 301 DOI: 10.1126/science.aao5686
[40]
Cui X 2018 Phys. Rev. A 98 023630 DOI: 10.1103/PhysRevA.98.023630
[41]
Adhikari S K 2014 Phys. Rev. A 89 013630 DOI: 10.1103/PhysRevA.89.013630
[42]
Zhang X F, Han W, Jiang H F, Liu W M, Saito H, Zhang S G 2016 Ann. Phys. 375 368 DOI: 10.1016/j.aop.2016.10.018
[43]
Cozzini M, Jackson B, Stringari S 2006 Phys. Rev. A 73 013603 DOI: 10.1103/PhysRevA.73.013603
[44]
Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301 DOI: 10.1103/PhysRevLett.113.165301
[45]
Kasamatsu K, Tsubota M, Ueda M 2005 Phys. Rev. A 71 043611 DOI: 10.1103/PhysRevA.71.043611
[46]
Wen L, Qiao Y, Xu Y, Mao L 2013 Phys. Rev. A 87 033604 DOI: 10.1103/PhysRevA.87.033604
[47]
Wen L, Li J 2014 Phys. Rev. A 90 053621 DOI: 10.1103/PhysRevA.90.053621
[48]
Ferrier-Barbut I, Wenzel M, Boettcher F, Langen T, Isoard M, Stringari S, Pfau T 2018 Phys. Rev. Lett. 120 160402 DOI: 10.1103/PhysRevLett.120.160402
[49]
Tang Y, Sykes A, Burdick N Q, Bohn J L, Lev B L 2015 Phys. Rev. A 92 022703 DOI: 10.1103/PhysRevA.92.022703
[50]
Fetter A L 2009 Rev. Mod. Phys. 81 647 DOI: 10.1103/RevModPhys.81.647
[51]
Anderson P W, Toulouse G 1977 Phys. Rev. Lett. 38 508 DOI: 10.1103/PhysRevLett.38.508
[52]
Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases 2 New York Cambridge University Press 348 354
[53]
Yang H, Wang Q, Wen L 2019 J. Phys. Soc. Jpn. 88 064001 DOI: 10.7566/JPSJ.88.064001
[54]
Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301 DOI: 10.1103/PhysRevLett.113.165301
[55]
Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B 52 155302 DOI: 10.1088/1361-6455/ab2a9b
[56]
Skyrme T H R 1962 Nucl. Phys. 31 556 DOI: 10.1016/0029-5582(62)90775-7
[57]
Mermin N D, Ho T L 1976 Phys. Rev. Lett. 36 594 DOI: 10.1103/PhysRevLett.36.594
[1] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[2] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[6] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[7] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[8] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[9] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[10] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[11] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[12] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[13] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[14] Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨). Chin. Phys. B, 2019, 28(9): 093701.
[15] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
No Suggested Reading articles found!