Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 073702    DOI: 10.1088/1674-1056/ac6579
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Superfluid to Mott-insulator transition in a one-dimensional optical lattice

Wenliang Liu(刘文良)1,2, Ningxuan Zheng(郑宁宣)1, Jun Jian(蹇君)3, Li Tian(田丽)1, Jizhou Wu(武寄洲)1,†, Yuqing Li(李玉清)1,2, Yongming Fu(付永明)1, Peng Li(李鹏)1, Vladimir Sovkov1,4, Jie Ma(马杰)1,2,‡, Liantuan Xiao(肖连团)1,2, and Suotang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China;
4 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
Abstract  Bose-Einstein condensates (BEC) of sodium atoms are transferred into one-dimensional (1D) optical lattice potentials, formed by two laser beams with a wavelength of 1064 nm, in a shallow optical trap. The phase coherence of the condensate in the lattice potential is studied by changing the lattice depth. A qualitative change in behavior of the BEC is observed at a lattice depth of ~ 13.7 Er, where the quantum gas undergoes a transition from a superfluid state to a state that lacks well-to-well phase coherence.
Keywords:  Bose-Einstein condensate      optical lattice      superfluid      Mott-insulator phase  
Received:  04 March 2022      Revised:  02 April 2022      Accepted manuscript online:  08 April 2022
PACS:  37.10.Jk (Atoms in optical lattices)  
  37.10.De (Atom cooling methods)  
  67.25.D- (Superfluid phase)  
  67.85.Jk (Other Bose-Einstein condensation phenomena)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 62020106014, 62175140, 61901249, 92165106, and 12104276), PCSIRT (Grant No. IRT-17R70), the 111 Project (Grant No. D18001), the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201901D211191 and 201901D211188), the Shanxi 1331 KSC, and the Collaborative Grant by the Russian Foundation for Basic Research and NNSF of China (Grant No. 62011530047 and Grant No. 20-53-53025 in the RFBR Classifcation).
Corresponding Authors:  Jizhou Wu, Jie Ma     E-mail:  wujz@sxu.edu.cn;mj@sxu.edu.cn

Cite this article: 

Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂) Superfluid to Mott-insulator transition in a one-dimensional optical lattice 2022 Chin. Phys. B 31 073702

[1] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[2] Becker C, Soltan-Panahi P, Kronjäer J, Döscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025
[3] Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601
[4] Wang J G, Li Y Q and Dong Y F 2020 Chin. Phys. B 29 100304
[5] Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B and Chang H 2020 Chin. Phys. B 29 070602
[6] Yao Y Q and Li J 2020 Chin. Phys. B 29 103701
[7] Yang S F, Zhou T W, Chen L, Yang K X, Zhai Y Y, Yue X G and Chen X Z 2020 Chin. Phys. Lett. 37 040301
[8] Xu K, Liu Y, Abo-Shaeer J R, Mukaiyama T, Chin J K, Miller D E and Ketterle W 2005 Phys. Rev. A 72 043604
[9] Jongchul M, Patrick M, Gretchen K C, Luis G M, David E P and Wolfgang K 2007 Phys. Rev. Lett. 99 150604
[10] Shion Y, Ryosuke Y and Shunji T 2021 Phys. Rev. A 103 043305
[11] Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett 123 113002
[12] Becker C, Soltan-Panahi P, Kronjäer J, Döscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025
[13] Widera A, Gerbier F, Föling S, Gericke T, Mandel O and Bloch I 2005 Phys. Rev. Lett. 95 190405
[14] Jaksch D 2004 Contemp. Phys. 45 367
[15] Rom T, Best T, Mandel O, Widera A, Greiner M, Hansch T W and Bloch I 2004 Phys. Rev. Lett. 93 073002
[16] Jaksch D, Venturi V, Cirac J L, Williams C J and Zoller P 2002 Phys. Rev. Lett. 89 040402
[17] Moore M G and Sadeghpour H R 2003 Phys. Rev. A 67 041603
[18] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
[19] Rubem M, Predrag N and Marcos R 2015 Phys. Rev. A 92 013601
[20] Markus G, Olaf M, Tilman E, Theodor W H and Immanuel B 2002 Nature 415 39
[21] Hadzibabic Z, Stock S, Battelier B, Bretin V and Dalibard J 2004 Phys. Rev. Lett. 93 180403
[22] Sapiro R E, Zhang R and Raithel G 2009 New J. Phys. 11 013013
[23] Li J, Yu Y, Dudarev A M and Niu Q 2006 New J. Phys. 8 154
[24] van Oosten D, van der Straten P and Stoof H T C 2003 Phys. Rev. A 67 033606
[25] Liu W L, Zheng N X, Wang X F, Xu J, Li Y Q, Sovkov V B, Li P, Fu Y M, Wu J Z, Ma J, Xiao L T and Jia S T 2021 J. Phys. B:At. Mol. Opt. Phys. 54 155501
[26] Oliver M and Markus O 2006 Rev. Mod. Phys. 78 179
[27] Ketterle W, Durfee D S, and Stamper-Kurn D M 1999 arXiv:cond-mat/9904034v2[hep-ph]
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[4] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[9] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[10] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[11] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[12] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[15] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
No Suggested Reading articles found!