|
|
Superfluid to Mott-insulator transition in a one-dimensional optical lattice |
Wenliang Liu(刘文良)1,2, Ningxuan Zheng(郑宁宣)1, Jun Jian(蹇君)3, Li Tian(田丽)1, Jizhou Wu(武寄洲)1,†, Yuqing Li(李玉清)1,2, Yongming Fu(付永明)1, Peng Li(李鹏)1, Vladimir Sovkov1,4, Jie Ma(马杰)1,2,‡, Liantuan Xiao(肖连团)1,2, and Suotang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China; 4 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia |
|
|
Abstract Bose-Einstein condensates (BEC) of sodium atoms are transferred into one-dimensional (1D) optical lattice potentials, formed by two laser beams with a wavelength of 1064 nm, in a shallow optical trap. The phase coherence of the condensate in the lattice potential is studied by changing the lattice depth. A qualitative change in behavior of the BEC is observed at a lattice depth of ~ 13.7 Er, where the quantum gas undergoes a transition from a superfluid state to a state that lacks well-to-well phase coherence.
|
Received: 04 March 2022
Revised: 02 April 2022
Accepted manuscript online: 08 April 2022
|
PACS:
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
37.10.De
|
(Atom cooling methods)
|
|
67.25.D-
|
(Superfluid phase)
|
|
67.85.Jk
|
(Other Bose-Einstein condensation phenomena)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 62020106014, 62175140, 61901249, 92165106, and 12104276), PCSIRT (Grant No. IRT-17R70), the 111 Project (Grant No. D18001), the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201901D211191 and 201901D211188), the Shanxi 1331 KSC, and the Collaborative Grant by the Russian Foundation for Basic Research and NNSF of China (Grant No. 62011530047 and Grant No. 20-53-53025 in the RFBR Classifcation). |
Corresponding Authors:
Jizhou Wu, Jie Ma
E-mail: wujz@sxu.edu.cn;mj@sxu.edu.cn
|
Cite this article:
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂) Superfluid to Mott-insulator transition in a one-dimensional optical lattice 2022 Chin. Phys. B 31 073702
|
[1] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191 [2] Becker C, Soltan-Panahi P, Kronjäer J, Döscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025 [3] Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601 [4] Wang J G, Li Y Q and Dong Y F 2020 Chin. Phys. B 29 100304 [5] Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B and Chang H 2020 Chin. Phys. B 29 070602 [6] Yao Y Q and Li J 2020 Chin. Phys. B 29 103701 [7] Yang S F, Zhou T W, Chen L, Yang K X, Zhai Y Y, Yue X G and Chen X Z 2020 Chin. Phys. Lett. 37 040301 [8] Xu K, Liu Y, Abo-Shaeer J R, Mukaiyama T, Chin J K, Miller D E and Ketterle W 2005 Phys. Rev. A 72 043604 [9] Jongchul M, Patrick M, Gretchen K C, Luis G M, David E P and Wolfgang K 2007 Phys. Rev. Lett. 99 150604 [10] Shion Y, Ryosuke Y and Shunji T 2021 Phys. Rev. A 103 043305 [11] Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett 123 113002 [12] Becker C, Soltan-Panahi P, Kronjäer J, Döscher S, Bongs K and Sengstock K 2010 New J. Phys. 12 065025 [13] Widera A, Gerbier F, Föling S, Gericke T, Mandel O and Bloch I 2005 Phys. Rev. Lett. 95 190405 [14] Jaksch D 2004 Contemp. Phys. 45 367 [15] Rom T, Best T, Mandel O, Widera A, Greiner M, Hansch T W and Bloch I 2004 Phys. Rev. Lett. 93 073002 [16] Jaksch D, Venturi V, Cirac J L, Williams C J and Zoller P 2002 Phys. Rev. Lett. 89 040402 [17] Moore M G and Sadeghpour H R 2003 Phys. Rev. A 67 041603 [18] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404 [19] Rubem M, Predrag N and Marcos R 2015 Phys. Rev. A 92 013601 [20] Markus G, Olaf M, Tilman E, Theodor W H and Immanuel B 2002 Nature 415 39 [21] Hadzibabic Z, Stock S, Battelier B, Bretin V and Dalibard J 2004 Phys. Rev. Lett. 93 180403 [22] Sapiro R E, Zhang R and Raithel G 2009 New J. Phys. 11 013013 [23] Li J, Yu Y, Dudarev A M and Niu Q 2006 New J. Phys. 8 154 [24] van Oosten D, van der Straten P and Stoof H T C 2003 Phys. Rev. A 67 033606 [25] Liu W L, Zheng N X, Wang X F, Xu J, Li Y Q, Sovkov V B, Li P, Fu Y M, Wu J Z, Ma J, Xiao L T and Jia S T 2021 J. Phys. B:At. Mol. Opt. Phys. 54 155501 [26] Oliver M and Markus O 2006 Rev. Mod. Phys. 78 179 [27] Ketterle W, Durfee D S, and Stamper-Kurn D M 1999 arXiv:cond-mat/9904034v2[hep-ph] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|