Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116701    DOI: 10.1088/1674-1056/abbbe8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap

Qing-Bo Wang(王庆波)1,2, Hui Yang(杨慧)1,3, Ning Su(苏宁)1, and Ling-Hua Wen(文灵华)1, †
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
2 School of Physics and Technology, Tangshan Normal University, Tangshan 063000, China
3 Department of Physics, Xinzhou Teachers University, Xinzhou 034000, China
Abstract  

We investigate the ground-state phases and spin textures of spin–orbit-coupled dipolar pseudo-spin-1/2 Bose–Einstein condensates in a rotating two-dimensional toroidal potential. The combined effects of dipole–dipole interaction (DDI), spin–orbit coupling (SOC), rotation, and interatomic interactions on the ground-state structures and topological defects of the system are analyzed systematically. For fixed SOC strength and rotation frequency, we provide a set of phase diagrams as a function of the DDI strength and the ratio between inter- and intra-species interactions. The system can show rich quantum phases including a half-quantum vortex, symmetrical (asymmetrical) phase with quantum droplets (QDs), asymmetrical segregated phase with hidden vortices (ASH phase), annular condensates with giant vortices, triangular (square) vortex lattice with QDs, and criss-cross vortex string lattice, depending on the competition between DDI and contact interaction. For given DDI strength and rotation frequency, the increase of the SOC strength leads to a structural phase transition from an ASH phase to a tetragonal vortex lattice then to a pentagonal vortex lattice and finally to a vortex necklace, which is also demonstrated by the momentum distributions. Without rotation, the interplay of DDI and SOC may result in the formation of a unique trumpet-shaped Bloch domain wall. In addition, the rotation effect is discussed. Furthermore, the system supports exotic topological excitations, such as a half-skyrmion (meron) string, triangular skyrmion lattice, skyrmion–half-skyrmion lattice, skyrmion–meron cluster, skyrmion–meron layered necklace, skyrmion–giant-skyrmion necklace lattice, and half-skyrmion–half-antiskyrmion necklace.

Keywords:  Bose-Einstein condensate      dipole-dipole interaction      spin-orbit coupling      topological defects  
Received:  29 June 2020      Revised:  17 August 2020      Accepted manuscript online:  28 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11475144 and 11047033), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019203049 and A2015203037), the University Science and Technology Foundation of Hebei Provincial Department of Education, China (Grant No. Z2017056), Science and Technology Plan Projects of Tangshan City, China (Grant No. 19130220g), and Research Foundation of Yanshan University, China (Grant No. B846).
Corresponding Authors:  Corresponding author. E-mail: linghuawen@ysu.edu.cn   

Cite this article: 

Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华) Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap 2020 Chin. Phys. B 29 116701

Fig. 1.  

The γddδ phase diagram with γdd > 0, Ω = 0.4, and λ = 1.5. There are five different ground-state phases marked by (I)–(V). (I) half-quantum vortex phase (HQV phase), (II) asymmetrical phase with quantum droplets (AQD phase), (III) symmetrical phase with quantum droplets (SQD phase), (IV) asymmetrical segregated phase with hidden vortices (ASH phase), and (V) annular condensates with giant vortices (ACG phase). The unit length is a0.

Fig. 2.  

Density distributions and phase distributions for different repulsive γdd with Ω = 0.4 and λ = 1.5: (a) γdd = 0.5, δ = 1.7, (b) γdd = 0.5, δ = 4, (c) γdd = 0.85, δ = 6, (d) γdd = 0.15, δ = 7.5, and (e) γdd = 0.65, δ = 7.5. The rows from top to bottom represent |ψ1|2, | ψ2|2, argψ1, and argψ2, respectively. The unit length is a0.

Fig. 3.  

The γddδ phase diagram with γdd < 0, Ω = 0.4, and λ = 1.5. There are five different ground-state phases marked by (I)–(V). (I) annular condensates with giant vortices (ACG phase), (II) triangular vortex lattice with quantum droplets (TVD phase), (III) square vortex lattice with quantum droplets (SVD phase), (IV) criss-cross vortex string lattice (CVS phase), and (V) triangular vortex lattice (TVL phase). The unit length is a0.

Fig. 4.  

Density distributions and phase distributions for different attractive γdd with Ω = 0.4 and λ = 1.5: (a) γdd = −3, δ = 7.5, (b) γdd = −6, δ = 4, (c) γdd = −2, δ = 7.5, (d) γdd = −2.5, δ = 7.5, and (e) γdd = −3, δ = 4. The rows from top to bottom represent |ψ1|2, |ψ2|2, arg ψ1, and arg ψ2, respectively. The unit length is a0.

Fig. 5.  

Density distributions and phase distributions for different isotropic SOC strength λ with Ω = 0.8 and γdd = 0.5: (a) λ = 0, δ = 4, (b) λ = 1.5, δ = 4, (c) λ = 2, δ = 4, (d) λ = 3, δ = 4, (e) λ = 2, δ = 7.5, (f) λ = 3, δ = 7.5, (g) λ = 4, δ = 7.5 and (h) λ = 10, δ = 7.5. The rows from top to bottom represent |ψ1|2, |ψ2|2, argψ1, argψ2, and momentum distribution of component 2, respectively.

Fig. 6.  

Ground states of rotating spin-1/2 BECs with SOC and DDI in a toroidal trap, where γdd = 0.5, λ = 2, and δ = 7.5. (a) Ω = 0, (b) Ω = 0.3, (c) Ω = 0.5, (d) Ω = 1, and (e) Ω = 1.4. The rows from left to right represent |ψ1|2, |ψ2|2, arg ψ1, arg ψ2, |ψ1|2 + |ψ2|2, and |ψ1|2 − |ψ2|2, respectively. The unit length is a0.

Fig. 7.  

Density differences and spin densities of rotating spin-1/2 BECs with SOC and DDI in a toroidal trap. The rows from top to bottom denote |ψ1|2−|ψ2|2, Sx, Sy, and Sz, respectively. The corresponding ground states in (a)-(d) are shown in Figs. 2(b), 4(e), 5(a), and 5(d), respectively. The unit length is a0.

Case Ground-state phase
S0D0R0T0 Mixing phase or demixing phase[52]
S0D0R0T1 Quantized persistent flow[34]
S0D0R1T0 Triangular vortex lattice[50]
S0D0R1T1 Giant vortex[22,43]
S0D1R0T0 Rosensweig pattern[2]
S0D1R0T1 Layer-separated symmetry preserving annular structure[53]
S1D0R0T0 Plane-wave phase or stripe phase[14,21]
S1D0R0T1 Necklace state[36]
S0D1R1T0 Half-quantum vortex chain phase[54]
S0D1R1T1 Symmetry broken separated phase
S1D0R1T0 Half-quantum vortex[27]
S1D0R1T1 Vortex necklace with hidden giant vortex and hidden vortex necklaces[22]
S1D1R0T0 Immiscible phase with hidden vortex, or plane-wave phase[55]
S1D1R0T1 Petal-like separated phase with ghost vortices and antivortices in each component
S1D1R1T0 Vortex sheet
S1D1R1T1 Symmetrical (asymmetrical) phase with QDs, vortex lattice with QDs, and criss-cross vortex string lattice, etc
Table 1.  

Typical ground-state phases of two-component BECs.

Fig. 8.  

Topological charge densities and spin textures of spin–orbit-coupled dipolar BECs in a rotating toroidal trap, where the corresponding ground states for (a)–(d) are given in Figs. 2(b), 4(c), 4(d), and 4(e), respectively. The first column (from left to right) represents topological charge density, the second column is spin texture, and the right two columns denote the local amplifications of the spin texture. The red solid square and the red solid circle denote a skyrmion and a half-skyrmion, respectively. The unit length is a0.

Fig. 9.  

Topological charge densities and spin textures of spin–orbit-coupled dipolar BECs in a rotating toroidal trap, where the ground states for (a)–(d) are shown in Figs. 5(a), 5(d), 5(f), and 6(e), respectively. The first column (from left to right) denotes topological charge density, the second column is spin texture, and the right two columns represent the local amplifications of the spin texture. The red solid square, red solid circle, red solid octagon, and blue dotted circle represent a skyrmion, a half-skyrmion, a giant skyrmion, and a half-antiskyrmion, respectively. The unit length is a0.

[1]
Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401 DOI: 10.1088/0034-4885/72/12/126401
[2]
Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253 DOI: 10.1016/j.physrep.2012.07.005
[3]
Santos L, Shlyapnikov G V, Lewenstein M 2003 Phys. Rev. Lett. 90 250403 DOI: 10.1103/PhysRevLett.90.250403
[4]
Deng Y, Cheng J, Jing H, Sun C P, Yi S 2012 Phys. Rev. Lett. 108 125301 DOI: 10.1103/PhysRevLett.108.125301
[5]
Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T 2016 Nature 530 194 DOI: 10.1038/nature16485
[6]
Prasad S B, Bland T, Mulkerin B C, Parker N G, Martin A M 2019 Phys. Rev. A 100 023625 DOI: 10.1103/PhysRevA.100.023625
[7]
Oldziejewski R, Gorecki W, Pawlowski K, Rzazewski K 2020 Phys. Rev. Lett. 124 090401 DOI: 10.1103/PhysRevLett.124.090401
[8]
Lepoutre S, Gabardos L, Kechadi K, Pedri P, Gorceix O, Maréchal E, Vernac L, Laburthe-Tolra B 2018 Phys. Rev. Lett. 121 013201 DOI: 10.1103/PhysRevLett.121.013201
[9]
Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401 DOI: 10.1103/PhysRevLett.107.190401
[10]
Chomaz L, van Bijnen R M W, Petter D, Faraoni G, Baier S, Becher J H, Mark M J, Wächtler F, Santos L, Ferlaino F 2018 Nat. Phys. 14 442 DOI: 10.1038/s41567-018-0054-7
[11]
Christianen A, Zwierlein M W, Groenenboom G C, Karman T 2019 Phys. Rev. Lett. 123 123402 DOI: 10.1103/PhysRevLett.123.123402
[12]
Lin Y J, Jiménez-GarcíaK K, Spielman I B 2011 Nature 471 83 DOI: 10.1038/nature09887
[13]
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 DOI: 10.1103/PhysRevLett.109.095302
[14]
Zhai H 2015 Rep. Prog. Phys. 78 026001 DOI: 10.1088/0034-4885/78/2/026001
[15]
Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039 DOI: 10.1088/0022-3719/17/33/015
[16]
Dresselhaus G 1955 Phys. Rev. 100 580 DOI: 10.1103/PhysRev.100.580
[17]
Goldman N, Juzeliūnas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401 DOI: 10.1088/0034-4885/77/12/126401
[18]
Yang H, Wang Q, Su N, Wen L 2019 Eur. Phys. J. Plus 134 589 DOI: 10.1140/epjp/i2019-12988-y
[19]
Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83 DOI: 10.1126/science.aaf6689
[20]
Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540 DOI: 10.1038/nphys3672
[21]
Zhang Y, Mao L, Zhang C 2012 Phys. Rev. Lett. 108 035302 DOI: 10.1103/PhysRevLett.108.035302
[22]
Wang H, Wen L, Yang H, Shi C, Li J 2017 J. Phys. B 50 155301 DOI: 10.1088/1361-6455/aa7afd
[23]
Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91 DOI: 10.1038/nature21431
[24]
Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614 DOI: 10.1103/PhysRevA.87.013614
[25]
Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401 DOI: 10.1103/PhysRevLett.107.270401
[26]
Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402 DOI: 10.1103/PhysRevLett.108.010402
[27]
Xu X Q, Han J H 2011 Phys. Rev. Lett. 107 200401 DOI: 10.1103/PhysRevLett.107.200401
[28]
Zhou X F, Zhou J, Wu C 2011 Phys. Rev. A 84 063624 DOI: 10.1103/PhysRevA.84.063624
[29]
Liu C F, Fan H, Zhang Y C, Wang D S, Liu W M 2012 Phys. Rev. A 86 053616 DOI: 10.1103/PhysRevA.86.053616
[30]
Aftalion A, Mason P 2013 Phys. Rev. A 88 023610 DOI: 10.1103/PhysRevA.88.023610
[31]
Wen L, Xiong H, Wu B 2010 Phys. Rev. A 82 053627 DOI: 10.1103/PhysRevA.82.053627
[32]
Wei Y W, Kong C, Hai W H 2019 Chin. Phys. B 28 056701 http://cpb.iphy.ac.cn/EN/abstract/abstract73922.shtml
[33]
Zhang A X, Zhang Y, Jiang Y F, Yu Z F, Cai L X, Xue J K 2020 Chin. Phys. B 29 010307 http://cpb.iphy.ac.cn/EN/abstract/abstract75194.shtml
[34]
Eckel S, Lee J G, Jendrzejewski F, Murray N, Clark C W, Lobb C J, Phillips W D, Edwards M, Campbell G K 2014 Nature 506 200 DOI: 10.1038/nature12958
[35]
Zhang X F, Kato M, Han W, Zhang S G, Saito H 2017 Phys. Rev. A 95 033620 DOI: 10.1103/PhysRevA.95.033620
[36]
White A C, Zhang Y P, Busch T 2017 Phys. Rev. A 95 041604 DOI: 10.1103/PhysRevA.95.041604
[37]
Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301 in Chinese DOI: 10.7498/aps.69.20200372
[38]
Mason P, Aftalion A 2011 Phys. Rev. A 84 033611 DOI: 10.1103/PhysRevA.84.033611
[39]
Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L 2018 Science 359 301 DOI: 10.1126/science.aao5686
[40]
Cui X 2018 Phys. Rev. A 98 023630 DOI: 10.1103/PhysRevA.98.023630
[41]
Adhikari S K 2014 Phys. Rev. A 89 013630 DOI: 10.1103/PhysRevA.89.013630
[42]
Zhang X F, Han W, Jiang H F, Liu W M, Saito H, Zhang S G 2016 Ann. Phys. 375 368 DOI: 10.1016/j.aop.2016.10.018
[43]
Cozzini M, Jackson B, Stringari S 2006 Phys. Rev. A 73 013603 DOI: 10.1103/PhysRevA.73.013603
[44]
Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301 DOI: 10.1103/PhysRevLett.113.165301
[45]
Kasamatsu K, Tsubota M, Ueda M 2005 Phys. Rev. A 71 043611 DOI: 10.1103/PhysRevA.71.043611
[46]
Wen L, Qiao Y, Xu Y, Mao L 2013 Phys. Rev. A 87 033604 DOI: 10.1103/PhysRevA.87.033604
[47]
Wen L, Li J 2014 Phys. Rev. A 90 053621 DOI: 10.1103/PhysRevA.90.053621
[48]
Ferrier-Barbut I, Wenzel M, Boettcher F, Langen T, Isoard M, Stringari S, Pfau T 2018 Phys. Rev. Lett. 120 160402 DOI: 10.1103/PhysRevLett.120.160402
[49]
Tang Y, Sykes A, Burdick N Q, Bohn J L, Lev B L 2015 Phys. Rev. A 92 022703 DOI: 10.1103/PhysRevA.92.022703
[50]
Fetter A L 2009 Rev. Mod. Phys. 81 647 DOI: 10.1103/RevModPhys.81.647
[51]
Anderson P W, Toulouse G 1977 Phys. Rev. Lett. 38 508 DOI: 10.1103/PhysRevLett.38.508
[52]
Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases 2 New York Cambridge University Press 348 354
[53]
Yang H, Wang Q, Wen L 2019 J. Phys. Soc. Jpn. 88 064001 DOI: 10.7566/JPSJ.88.064001
[54]
Shirley W E, Anderson B M, Clark C W, Wilson R M 2014 Phys. Rev. Lett. 113 165301 DOI: 10.1103/PhysRevLett.113.165301
[55]
Li X, Wang Q, Wang H, Shi C, Jardine M, Wen L 2019 J. Phys. B 52 155302 DOI: 10.1088/1361-6455/ab2a9b
[56]
Skyrme T H R 1962 Nucl. Phys. 31 556 DOI: 10.1016/0029-5582(62)90775-7
[57]
Mermin N D, Ho T L 1976 Phys. Rev. Lett. 36 594 DOI: 10.1103/PhysRevLett.36.594
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[10] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[11] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[12] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[13] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[14] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[15] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
No Suggested Reading articles found!