Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010307    DOI: 10.1088/1674-1056/ab5efc
GENERAL Prev   Next  

Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential

Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎)
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate. Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.
Keywords:  Bose-Einstein condensate      artificial magnetic field      optical lattice  
Received:  23 August 2019      Revised:  28 November 2019      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education Department, China (Grant No. 2016A-005).
Corresponding Authors:  Ai-Xia Zhang, Ju-Kui Xue     E-mail:  zhangax@nwnu.edu.cn;xuejk@nwnu.edu.cn

Cite this article: 

Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎) Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential 2020 Chin. Phys. B 29 010307

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Bloch I, Dalibard J and Nascimbène S 2012 Nat. Phys. 8 267
[3] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[4] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[5] Aidelsburger M, Atala M, Nascimbène S, Trotzky S, Chen Y and Bloch I 2011 Phys. Rev. Lett. 107 255301
[6] Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P 2012 Phys. Rev. Lett. 108 225304
[7] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301
[8] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302
[9] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[10] Lin Y J, Compton R L, Jiménez-Garcia K, Porto J V and Spielman I B 2009 Nature 462 628
[11] Goldman N, Beugnon J and Gerbier F 2013 Eur. Phys. J. Spec. Top. 217 135
[12] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[13] Struck J, Ölschläger C, Targat R L, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P and Sengstock K 2011 Science 333 996
[14] Ye Q, Qin X, Li Y, Zhong H, Kivshar Y S and Lee C 2018 Ann. Phys. 388 173
[15] Yu X Q and Flach S 2014 Phys. Rev. E 90 032910
[16] Galitski V, Juzeliunas G and Spielman I 2019 Phys. Today 72 38
[17] Aidelsburger M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 193001
[18] Gerbier F and Dalibard J 2010 New J. Phys. 12 033007
[19] Kasamatsu K and Sakashita K 2018 Phys. Rev. A 97 053622
[20] Orignac E, Citro R, Dio M D and Palo S D 2017 Phys. Rev. B 96 014518
[21] Towers J, Cormack S C and Hutchinson D A 2013 Phys. Rev. A 88 043625
[22] Chien C C and Ventra M D 2013 Phys. Rev. A 87 023609
[23] Chien C C, Peotta S and Ventra M D 2015 Nat. Phys. 11 998
[24] Iskin M 2012 Eur. Phys. J. B 85 76
[25] Oktel M O, Niţă M and Tanatar B 2007 Phys. Rev. B 75 045133
[26] Salasnich L, Cardoso W B and Malomed B A 2014 Phys. Rev. A 90 033629
[27] Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
[28] He P S, Zhu Y H and Liu W M 2014 Phys. Rev. A 89 053615
[29] He P S, You W L and Liu W M 2013 Phys. Rev. A 87 063603
[30] Khomeriki R and Flach S 2016 Phys. Rev. Lett. 116 245301
[31] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[32] Morsh O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[33] Zhang A X and Xue J K 2015 Europhys. Lett. 110 10009
[34] Buchhold M, Cocks D and Hofstetter W 2012 Phys. Rev. A 85 063614
[35] Goldman N, Beugnon J and Gerbier F 2012 Phys. Rev. Lett. 108 255303
[36] Goldman N, Beugnon J and Gerbier F 2013 Eur. Phys. J. Spec. Top. 217 135
[37] Goldman N, Dalibard J, Dauphin A, Gerbier F, Lewenstein M, Zoller P and Spielman I B 2013 Proc. Natl. Acad. Sci. USA 110 6736
[38] Kolovsky A R, Grusdt F and Fleischhauel M 2014 Phys. Rev. A 89 033607
[39] Snoek M and Hofstetter W 2007 Phys. Rev. A 76 051603
[40] Smerzi A and Trombettoni A 2003 Phys. Rev. A 68 023613
[41] Chin C, Grimm R, Julienne P and Feshbach E 2010 Rev. Mod. Phys. 82 1225
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[9] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[10] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[11] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[12] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[15] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
No Suggested Reading articles found!