Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056701    DOI: 10.1088/1674-1056/28/5/056701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice

Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华)
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  

We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose-Einstein condensate (BEC) with spin-orbit coupling (SOC) in an optical lattice. By adopting the rotating-wave approximation (RWA) and applying an exact trial-solution to the corresponding quasistationary system, we establish a different method for tuning SOC via external field such that the existence conditions of the exact particular solutions are fitted. Several novel features related to the exact states are demonstrated; for example, SOC leads to spin-motion entanglement for the spatiotemporal Bloch states, SOC increases the population imbalance of the two-component BEC, and SOC can be applied to manipulate the stable atomic flow which is conducive to control quantum transport of the BEC for different application purposes.

Keywords:  Bose-Einstein condensate      spin-orbit coupling      spatiotemporal Bloch state      spin-motion entanglement      stable atomic flow      high-frequency limit  
Received:  31 October 2018      Revised:  06 February 2019      Accepted manuscript online: 
PACS:  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  05.60.Gg (Quantum transport)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11475060).

Corresponding Authors:  Wen-Hua Hai     E-mail:  whhai2005@aliyun.com

Cite this article: 

Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华) Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice 2019 Chin. Phys. B 28 056701

[1] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[2] Elliott R J 1954 Phys. Rev. 96 280
[3] Dresselhaus G, Kip A F and Kittel C 1954 Phys. Rev. 95 568
[4] Dresselhaus G 1955 Phys. Rev. 100 580
[5] Rashba E I 1960 Sov. Phys. Solid State 2 1224
[6] Liu L, Chen W X, Wang R Q and Hu L B 2018 Chin. Phys. B 27 047201
[7] Tang Z H, Yao T X and Liu J J 2017 Chin. Phys. B 26 117203
[8] Zhang L 2018 Chin. Phys. B 27 067203
[9] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[10] Galitski V and Spielman I B 2013 Nature 494 49
[11] Huang F J, Chen Q H, and Liu W M 2014 Phys. Rev. A 89 033624
[12] Xie W F, He Y Z and Bao C G 2015 Chin. Phys. B 24 060305
[13] Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
[14] Zhang X F, Kato M, Han W, Zhang S G, and Saito H 2017 Phys. Rev. A 95 033620
[15] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[16] Li Z J, Hai W H and Deng Y 2013 Chin. Phys. B 22 090505
[17] Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202
[18] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604
[19] Zhou Z, Hai W H, Deng Y and Xie Q T 2012 Chaos Solitons & Fractals 45 1423
[20] Liu L W, Gengzang D J, An X J and Wang P Y 2018 Chin. Phys. B 27 034205
[21] Abdullaev F K and Kraenkel R A 2000 Phys. Rev. A 62 023613
[22] Fujioka J, Cortés E, Pérez-Pascual R, Rodríguez R F, Espinosa A and Malomed B A 2011 Chaos 21 033120
[23] Xu J, Hai W H and Li H 2007 Chin. Phys. B 16 2244
[24] Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
[25] Deconinck B, Kutz J N, Patterson M S and Warner B W 2003 J. Phys. A: Math. Gen. 36 5431
[26] Kostov N A, Enol'skii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617
[27] Zhang H F, Chen W, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[28] Bronski J C, Carr L D, Deconinck B, Kutz J N and Promislow K 2001 Phys. Rev. E 63 036612
[29] Hai W H, Li C H, Fang X M and Gao K L 2004 Physica A 335 445
[30] Theodorakis S and Leontidis E 1997 J. Phys. A: Math. Gen. 30 4835
[31] Hai W H, Li Y, Xia B and Luo X 2005 Europhys. Lett 71 28
[32] Deng H M, Hai W H and Zhu Q Q 2006 J. Phys. A: Math. Gen. 39 49
[33] Deconinck B, Frigyik B A and Kutz J N 2001 Phys. Lett. A 283 177
[34] Hai W H, Chong G S, Xie Q T and Lu J 2004 Eur. Phys. J. D 28 267
[35] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[36] Liu W M and Li J 2018 Acta Phys. Sin. 67 110302 (in Chinese)
[37] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[38] Cook R J, Shankland D G and Wells A L 1985 Phys. Rev. A 31 564
[39] Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101
[40] Yuan L M, Xu Y G, Gao W, Dai F and Wu Q L 2018 Chin. Phys. B 27 044101
[41] Salerno M, Abdullaev F K, Gammal A and Tomio L 2016 Phys. Rev. A 94 043602
[42] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
[43] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[44] Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
[45] Hai K, Luo Y R, Chong G S, Chen H and Hai W H 2017 Quantum Inf. Comput. 17 456
[46] Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
[47] Kong C, Chen H, Li C L and Hai W H 2018 Chaos 28 023115
[48] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[49] Romero-Isart O and García-Ripoll J J 2007 Phys. Rev. A 76 052304
[50] Luo Y R, Lu G B, Kong C and Hai W H 2016 Phys. Rev. A 93 043409
[51] Arlinghaus S and Holthaus M 2011 Phys. Rev. A 84 063617
[52] Paul T, Richter K and Schlagheck P 2005 Phys. Rev. Lett. 94 020404
[53] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Science 326 1241
[54] Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
[55] Chen Y A, Nascimbéne S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[56] Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
[57] Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S and Ye J 2011 Phys. Rev. Lett. 107 073202
[58] Inouye S, Andrews M R, Stengeretal J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[59] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[9] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[12] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[13] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
No Suggested Reading articles found!