ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction |
Xinqin Zhang(张新琴)1, Xiuwen Xia(夏秀文)1,2,†, Jingping Xu(许静平)2, Haozhen Li(李浩珍)3, Zeyun Fu(傅泽云)1, and Yaping Yang(羊亚平)2 |
1 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China; 2 MOE Key Laboratory of Advanced Micro-structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 3 College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract We present a work of manipulating collective unconventional photon blockade (UCPB) and nonreciprocal UCPB (NUCPB) in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical two-level atoms (TLAs). When the atoms do not interact directly, the frequency and intensity restrictions of collective UCPB can be specified, and a giant NUCPB exists due to the splitting of optimal atom-cavity coupling strength in proper parameter regime. However, if a weak atom-atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account, two restrictions of UCPB are combined complexly, which are rigorous to be matched simultaneously. Due to the push-and-pull effect induced by weak dipole-dipole interaction, the UCPB regime is compressed more or less. NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched, while it is suppressed when the restrictions are mismatched. In general, whether NUCPB is suppressed or promoted depends on its working parameters. Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms.
|
Received: 09 December 2021
Revised: 24 January 2022
Accepted manuscript online: 07 February 2022
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 12164022, 11864018, and 12174288) and the Fundamental Research Funds for the Provincial Universities of Zhejiang Province, China (Grant No. GK199900299012-015). |
Corresponding Authors:
Xiuwen Xia
E-mail: jgsuxxw@126.com
|
Cite this article:
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平) Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction 2022 Chin. Phys. B 31 074204
|
[1] Leonśki W and Miranowicz A 2004 J. Opt. B 6 S37 [2] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87 [3] Zou F, Zhang X Y, Xu X W, Huang J F and Liao J Q 2020 Phys. Rev. A 102 053710 [4] Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z and Yang C P 2020 Phys. Rev. A 102 033713 [5] Shen S, Li J and Wu Y 2020 Phys. Rev. A 101 023805 [6] Liang X, Duan Z, Guo Q, Guan S, Xie M and Liu C 2020 Phys. Rev. A 102 053713 [7] Kyriienko O, Krizhanovskii D N and Shelykh I A 2020 Phys. Rev. Lett. 125 197402 [8] Rabl P 2011 Phys. Rev. Lett. 107 063601 [9] Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Türeci H E and Houck A A 2011 Phys. Rev. Lett. 107 053602 [10] Imamoḡlu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467 [11] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062 [12] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P and Vučković J 2008 Nat. Phys. 4 859 [13] Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L and Imamoḡlu A 2012 Nat. Photon. 6 93 [14] Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov A A, Baur M, Filipp S, da Silva M P, Blais A and Wallraff A 2011 Phys. Rev. Lett. 106 243601 [15] Liew T C H and Savona V 2010 Phys. Rev. Lett. 104 183601 [16] Flayac H and Savona V 2017 Phys. Rev. A 96 053810 [17] Flayac H and Savona V 2013 Phys. Rev. A 88 033836 [18] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2015 Phys. Rev. A 92 033806 [19] Sarma B and Sarma A K 2018 Phys. Rev. A 98 013826 [20] Gao Y P, Liu X F, Wang T J, Cao C and Wang C 2019 Phys. Rev. A 100 043831 [21] Sarma B and Sarma A K 2017 Phys. Rev. A 96 053827 [22] Zhao D 2018 Phys. Rev. A 98 033834 [23] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J and Estéve J 2018 Phys. Rev. Lett. 121 043602 [24] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D and Löffler W 2018 Phys. Rev. Lett. 121 043601 [25] Cidrim A, do Espirito Santo T S, Schachenmayer J, Kaiser R and Bachelard R 2020 Phys. Rev. Lett. 125 073601 [26] Williamson L A, Borgh M O and Ruostekoski J 2020 Phys. Rev. Lett. 125 073602 [27] Zhu C J, Yang Y P and Agarwal G S 2017 Phys. Rev. A 95 063842 [28] Hou K, Zhu C J, Yang Y P and Agarwal G S 2019 Phys. Rev. A 100 063817 [29] Lin J Z, Hou K, Zhu C J and Yang Y P 2019 Phys. Rev. A 99 053850 [30] Li B, Huang R, Xu X, Miranowicz A and Jing H 2019 Photonics Res. 7 630 [31] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [32] Wang K, Wu Q, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832 [33] Shen H Z, Wang Q, Wang J and Yi X X 2020 Phys. Rev. A 101 013826 [34] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605 [35] Bamba M, Imamoǧlu A, Carusotto I and Ciuti C 2011 Phys. Rev. A 83 021802 [36] Xu X W, Li Y, Li B, Jing H and Chen A X 2020 Phys. Rev. Appl. 13 044070 [37] Xu X, Zhao Y, Wang H, Jing H and Chen A 2020 Photonics Res. 8 143 [38] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovic M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photonics 7 579 [39] Xia X, Xu J and Yang Y 2014 J. Opt. Soc. Am. B 31 2175 [40] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y and Zhang T 2019 Phys. Rev. Lett. 123 233604 [41] Xia X, Xu J and Yang Y 2014 Phys. Rev. A 90 043857 [42] Xia X, Zhang X, Xu J, Li H, Fu Z and Yang Y 2021 Phys. Rev. A 104 063713 [43] Yang P, Li M, Han X, He H, Li G, Zou C L, Zhang P and Zhang T 2019 arXiv 1911 10300v |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|