Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086104    DOI: 10.1088/1674-1056/28/8/086104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations

Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源)
School of Information Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  Heterostructures (HSs) have attracted significant attention because of their interlayer van der Waals interactions. The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory. The results indicate that the direct band gap (1.95 eV) of the GaN-MoS2 HS is lower than the individual band gaps of both the GaN layer (3.48 eV) and the MoS2 layer (2.03 eV) based on HSE06 hybrid functional calculations. Specifically, the GaN-MoS2 HS is a typical type-Ⅱ band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency. Under tensile or compressive strain, the direct band gap of the GaN-MoS2 HS undergoes redshifts. Additionally, the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5% or -5%. Therefore, the results reported above can be used to expand the application of GaN-MoS2 HSs to photovoltaic cells and photocatalysts.
Keywords:  GaN-MoS2 heterostructure      electronic structures      optical properties      first-principles calculations  
Received:  15 April 2019      Revised:  31 May 2019      Published:  05 August 2019
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB390), and the Doctoral Fund Project of Hubei Minzu University, China (Grant No. MY2017B015).
Corresponding Authors:  Dahua Ren     E-mail:  rdh_perfect@163.com

Cite this article: 

Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源) Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations 2019 Chin. Phys. B 28 086104

[1] Geim A and Grigorieva I 2013 Nature 499 419
[2] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584
[3] Selvaraj R, Kalimuthu K R and Kalimuthu V 2019 Mater. Lett. 245 183
[4] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. USA 111 6198
[5] Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
[6] Zhang X W, He D W, He J Q, Zhao S Q, Hao S C, Wang Y S and Yi L X 2017 Chin. Phys. B 26 097202
[7] Hou M C, Xie G and Sheng K 2019 Chin. Phys. B 28 037302
[8] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2016 Nat. Nanotechnol. 11 42
[9] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[10] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[11] Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H and Cai M Q 2017 J. Phys. D: Apll. Phys. 50 465101
[12] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[13] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L and Cai M Q 2018 Nanoscale 10 8677
[14] Wang H, Yuan H, Sae S H, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664
[15] Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[16] Miwa J A, Dendzik M, Gronborg S S, Bianchi M, Lauritsen J V, Hofmann P and Ulstrup S 2015 ACS Nano 9 6502
[17] He Y M, Yang Y, Zhang Z H, Gong Y J, Zhou W, Hu Z L, Ye G L, Zhang X, Bianco E, Lei S D, Jin Z H, Zou X L, Yang Y C, Zhang Y, Xie E Q, Lou J, Yakobson B, Vajtai R, Li B and Ajayan P 2016 Nano Lett. 16 3314
[18] Dingle R, Sell D D, Stokowski S E and Ilegems M 1971 Phys. Rev. B 4 1211
[19] Al Balushi Z Y, Wang K, Ghosh R K, ViláR A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
[20] Sun M L, Chou J P, Ren Q Q, Zhao Y M, Yu J and Tang W C 2017 Appl. Phys. Lett. 110 173105
[21] Prete M S, Mosca Conte A, Gori P, Bechstedt F and Pulci O 2017 Appl. Phys. Lett. 110 012103
[22] Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
[23] Zhang H, Meng F S and Wu Y B 2017 Solid State Commun. 250 18
[24] Sanders N, Bayerl D, Shi G, Mengle K A and Kioupakis E 2017 Nano Lett. 17 7345
[25] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P and Steiner M 2013 Nano Lett. 13 1416
[26] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[27] Perdew J P, Burke J P and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[30] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[31] Kohn W and Sham L 1965 Phys. Rev. 140 A1133
[32] Blochl P E 1994 Phys. Rev. B 50 17953
[33] Tsoi S, Dev P, Friedman A L, Stine R, Robinson J R, Reinecke T L and Sheehan P E 2014 ACS Nano 8 12410
[34] Lee L, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[35] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[36] Adler S L 1962 Phys. Rev. 126 413
[37] Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M and He J 2013 Nanoscale 5 8326
[38] Lo S S, Mirkovic T, Chuang C H, Burda C and Scholes G D 2011 Adv. Mater. 23 180
[1] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[7] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[8] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[9] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[10] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[11] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[12] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[13] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[14] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[15] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
No Suggested Reading articles found!