CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation |
Xue-Fei Liu(刘雪飞)1,2,3, Zi-Jiang Luo(罗子江)1,2,4, Xun Zhou(周勋)3, Jie-Min Wei(魏节敏)1,2,5, Yi Wang(王一)1,2, Xiang Guo(郭祥)1,2, Bing Lv(吕兵)3, Zhao Ding(丁召)1,2 |
1 College of Big Data and Information Engineering, Guizhou University, Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, China; 2 Semiconductor Power Device Reliability Engineering Center of Ministry of Education, Guiyang 550025, China; 3 College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China; 4 College of Information, Guizhou Finance and Economics University, Guiyang 550025, China; 5 Guizhou Institute of Technology, Guiyang 550002, China |
|
|
Abstract Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ-V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ-V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young's modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B-V (V=P, As, Sb, Bi) and Ⅲ-N (Ⅲ=Al, Ga, In, Tl) are found to be very different from those of other Ⅲ-V binary compounds.
|
Received: 10 April 2019
Revised: 20 May 2019
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002 and 11664005), the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation (Grant No. 0418010), and the Joint Foundation of Guizhou Normal University (Grant No. 7341). |
Corresponding Authors:
Zhao Ding
E-mail: zding@gzu.edu.cn
|
Cite this article:
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召) Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation 2019 Chin. Phys. B 28 086105
|
[41] |
Peng Q, Ji W and De S 2012 Comput. Mater. Sci. 56 11
|
[1] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[42] |
Shi L B, Zhang Y Y, Xiu X M and Dong H K 2018 Carbon 134 103
|
[2] |
Bhattacharya P, Mi Z and Rahman A Z M S 2016 Reference Module in Materials Science and Materials Engineering (Elsevier)
|
[43] |
Li M M, Xiaofeng F and Zheng W T 2013 J. Phys.: Condens. Matter 25 425502
|
[3] |
Hayrapetyan D B, Kazaryan E M and Sarkisyan H A 2016 Opt. Commun. 371 138
|
[44] |
Becke A D 1993 J. Chem. Phys. 98 1372
|
[4] |
Weiner E C, Jakomin R, Micha D N, Xie H, Su P Y, Pinto L D, Pires M P, Ponce F A and Souza P L 2018 Sol. Energy Mater. Sol. Cells 178 240
|
[45] |
Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
|
[5] |
Cardimona D A, Morath C P, Guidry D H and Cowan V M 2013 Infr. Phys. Technol. 59 93
|
[46] |
Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
|
[6] |
Kim K, Lambrecht W R L and Segall B 1996 Phys. Rev. B 53 16310
|
[47] |
Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.: Condens. Matter 20 064201
|
[7] |
Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
|
[8] |
Ustundag M, Aslan M and Yalcin B G 2014 Comput. Mater. Sci. 81 471
|
[9] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[10] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[11] |
Jensen P J and Bennemann K H 2006 Surf. Sci. Rep. 61 129
|
[12] |
Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
|
[13] |
Ci L, Song L, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Ajayan P M 2010 Nat. Mater. 9 430
|
[14] |
Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I and Ajayan P M 2010 Nano Lett. 10 3209
|
[15] |
Dong B J , Yang T, Wang J Z and Zhang Z D 2015 Chin. Phys. B 24 096806
|
[16] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D and Ye P D 2014 ACS Nano 8 4033
|
[17] |
Batmunkh M, Bat-Erdene M and Shapter J G 2016 Adv. Mater. 28 8586
|
[18] |
Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
|
[19] |
Beiranv R and Valedbagi S 2016 Optik 127 1553
|
[20] |
Bahuguna B P, Saini L K, Sharma R O and Tiwari B 2018 Phys. E 99 236
|
[21] |
Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
|
[22] |
Wang V, Ma N, Mizuseki H and Kawazoe Y 2012 Solid State Commun. 152 816
|
[23] |
Wang V, Wu Z Q, Kawazoe Y and Geng W T 2018 J. Phys. Chem. C 122 6930
|
[24] |
Wang V and Geng W T 2017 J. Phys. Chem. C 121 10224
|
[25] |
Li J, Fan X, Wei Y, Wang V and Chen G 2016 Chem. Phys. Lett. 660 244
|
[26] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[27] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[28] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[30] |
Monkhorst H J 1976 Phys. Rev. B 13 5188
|
[31] |
Birch F 1947 Phys. Rev. 71 809
|
[32] |
Noh J Y, Kim H and Kim Y S 2014 Phys. Rev. B 89 205417
|
[33] |
Wang V, Xiao W, Ma D M , Liu R J and Yang C M 2014 J. Appl. Phys. 115 043708
|
[34] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chemical Physics 118 8207
|
[35] |
Grimme S 2006 J. Computational Chemistry 27 1787
|
[36] |
Sanders N, Bayed D, Shi G S, Mengle K A and Kioupakis E 2017 Nano Lett. 17 7345
|
[37] |
Xu Y N and Ching W Y 1991 Phys. Rev. B 44 7787
|
[38] |
Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
|
[39] |
Shunhong Z, Jian Z, Qian W, Xiaoshuang C, Yoshiyuki K and Puru J 2015 Proc. Natl. Acad. Sci. USA 112 2372
|
[40] |
Zhong H, Huang K, Yu G and Yuan S 2018 Phys. Rev. B 98 054104
|
[41] |
Peng Q, Ji W and De S 2012 Comput. Mater. Sci. 56 11
|
[42] |
Shi L B, Zhang Y Y, Xiu X M and Dong H K 2018 Carbon 134 103
|
[43] |
Li M M, Xiaofeng F and Zheng W T 2013 J. Phys.: Condens. Matter 25 425502
|
[44] |
Becke A D 1993 J. Chem. Phys. 98 1372
|
[45] |
Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
|
[46] |
Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
|
[47] |
Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.: Condens. Matter 20 064201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|