Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086105    DOI: 10.1088/1674-1056/28/8/086105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation

Xue-Fei Liu(刘雪飞)1,2,3, Zi-Jiang Luo(罗子江)1,2,4, Xun Zhou(周勋)3, Jie-Min Wei(魏节敏)1,2,5, Yi Wang(王一)1,2, Xiang Guo(郭祥)1,2, Bing Lv(吕兵)3, Zhao Ding(丁召)1,2
1 College of Big Data and Information Engineering, Guizhou University, Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, China;
2 Semiconductor Power Device Reliability Engineering Center of Ministry of Education, Guiyang 550025, China;
3 College of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China;
4 College of Information, Guizhou Finance and Economics University, Guiyang 550025, China;
5 Guizhou Institute of Technology, Guiyang 550002, China
Abstract  Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ-V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ-V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young's modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B-V (V=P, As, Sb, Bi) and -N (=Al, Ga, In, Tl) are found to be very different from those of other Ⅲ-V binary compounds.
Keywords:  density functional theory      III-V binary      monolayers      band structure      mechanical properties  
Received:  10 April 2019      Revised:  20 May 2019      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.61.Ey (III-V semiconductors)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002 and 11664005), the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation (Grant No. 0418010), and the Joint Foundation of Guizhou Normal University (Grant No. 7341).
Corresponding Authors:  Zhao Ding     E-mail:  zding@gzu.edu.cn

Cite this article: 

Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召) Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation 2019 Chin. Phys. B 28 086105

[41] Peng Q, Ji W and De S 2012 Comput. Mater. Sci. 56 11
[1] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[42] Shi L B, Zhang Y Y, Xiu X M and Dong H K 2018 Carbon 134 103
[2] Bhattacharya P, Mi Z and Rahman A Z M S 2016 Reference Module in Materials Science and Materials Engineering (Elsevier)
[43] Li M M, Xiaofeng F and Zheng W T 2013 J. Phys.: Condens. Matter 25 425502
[3] Hayrapetyan D B, Kazaryan E M and Sarkisyan H A 2016 Opt. Commun. 371 138
[44] Becke A D 1993 J. Chem. Phys. 98 1372
[4] Weiner E C, Jakomin R, Micha D N, Xie H, Su P Y, Pinto L D, Pires M P, Ponce F A and Souza P L 2018 Sol. Energy Mater. Sol. Cells 178 240
[45] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
[5] Cardimona D A, Morath C P, Guidry D H and Cowan V M 2013 Infr. Phys. Technol. 59 93
[46] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[6] Kim K, Lambrecht W R L and Segall B 1996 Phys. Rev. B 53 16310
[47] Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.: Condens. Matter 20 064201
[7] Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
[8] Ustundag M, Aslan M and Yalcin B G 2014 Comput. Mater. Sci. 81 471
[9] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[10] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[11] Jensen P J and Bennemann K H 2006 Surf. Sci. Rep. 61 129
[12] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
[13] Ci L, Song L, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Ajayan P M 2010 Nat. Mater. 9 430
[14] Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I and Ajayan P M 2010 Nano Lett. 10 3209
[15] Dong B J , Yang T, Wang J Z and Zhang Z D 2015 Chin. Phys. B 24 096806
[16] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[17] Batmunkh M, Bat-Erdene M and Shapter J G 2016 Adv. Mater. 28 8586
[18] Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
[19] Beiranv R and Valedbagi S 2016 Optik 127 1553
[20] Bahuguna B P, Saini L K, Sharma R O and Tiwari B 2018 Phys. E 99 236
[21] Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
[22] Wang V, Ma N, Mizuseki H and Kawazoe Y 2012 Solid State Commun. 152 816
[23] Wang V, Wu Z Q, Kawazoe Y and Geng W T 2018 J. Phys. Chem. C 122 6930
[24] Wang V and Geng W T 2017 J. Phys. Chem. C 121 10224
[25] Li J, Fan X, Wei Y, Wang V and Chen G 2016 Chem. Phys. Lett. 660 244
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Monkhorst H J 1976 Phys. Rev. B 13 5188
[31] Birch F 1947 Phys. Rev. 71 809
[32] Noh J Y, Kim H and Kim Y S 2014 Phys. Rev. B 89 205417
[33] Wang V, Xiao W, Ma D M , Liu R J and Yang C M 2014 J. Appl. Phys. 115 043708
[34] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chemical Physics 118 8207
[35] Grimme S 2006 J. Computational Chemistry 27 1787
[36] Sanders N, Bayed D, Shi G S, Mengle K A and Kioupakis E 2017 Nano Lett. 17 7345
[37] Xu Y N and Ching W Y 1991 Phys. Rev. B 44 7787
[38] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[39] Shunhong Z, Jian Z, Qian W, Xiaoshuang C, Yoshiyuki K and Puru J 2015 Proc. Natl. Acad. Sci. USA 112 2372
[40] Zhong H, Huang K, Yu G and Yuan S 2018 Phys. Rev. B 98 054104
[41] Peng Q, Ji W and De S 2012 Comput. Mater. Sci. 56 11
[42] Shi L B, Zhang Y Y, Xiu X M and Dong H K 2018 Carbon 134 103
[43] Li M M, Xiaofeng F and Zheng W T 2013 J. Phys.: Condens. Matter 25 425502
[44] Becke A D 1993 J. Chem. Phys. 98 1372
[45] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982
[46] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[47] Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.: Condens. Matter 20 064201
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[11] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[12] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[13] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!