Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037103    DOI: 10.1088/1674-1056/acb200
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal

Wenyu Xiang(相文雨)1, Yaping Wang(王亚萍)2, Weixiao Ji(纪维霄)1, Wenjie Hou(侯文杰)3, Shengshi Li(李胜世)1,†, and Peiji Wang(王培吉)1
1 Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China;
2 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China;
3 School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  Searching for one-dimensional (1D) nanostructure with ferromagnetic (FM) half-metallicity is of significance for the development of miniature spintronic devices. Here, based on the first-principles calculations, we propose that the 1D CrN nanostructure is a FM half-metal, which can generate the fully spin-polarized current. The ab initio molecular dynamic simulation and the phonon spectrum calculation demonstrate that the 1D CrN nanostructure is thermodynamically stable. The partially occupied Cr-d orbitals endow the nanostructure with FM half-metallicity, in which the half-metallic gap (Δs) reaches up to 1.58 eV. The ferromagnetism in the nanostructure is attributed to the superexchange interaction between the magnetic Cr atoms, and a sizable magnetocrystalline anisotropy energy (MAE) is obtained. Moreover, the transverse stretching of nanostructure can effectively modulate Δs and MAE, accompanied by the preservation of half-metallicity. A nanocable is designed by encapsulating the CrN nanostructure with a BN nanotube, and the intriguing magnetic and electronic properties of the nanostructure are retained. These novel characteristics render the 1D CrN nanostructure as a compelling candidate for exploiting high-performance spintronic devices.
Keywords:  half-metal      ferromagnetism      one-dimensional nanostructure      first-principles calculations  
Received:  19 September 2022      Revised:  23 December 2022      Accepted manuscript online:  11 January 2023
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004137, 62071200, and 12104236), and Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2020QA052, ZR2020ZD28, ZR2021MA040, and ZR2021MA060).
Corresponding Authors:  Shengshi Li     E-mail:  sdy_liss@ujn.edu.cn

Cite this article: 

Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉) Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal 2023 Chin. Phys. B 32 037103

[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Fert A 2008 Rev. Mod. Phys. 80 1517
[3] Pickett W E and Moodera J S 2001 Phys. Today 54 39
[4] Xiang H, Yang J, Hou J G and Zhu Q 2006 J. Am. Chem. Soc. 128 2310
[5] de Groot R A, Muller F M, van Engen P G and Bushow K H J 1983 Phys. Rev. Lett. 50 2024
[6] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
[7] Mallajosyula S S and Pati S K 2007 J. Phys. Chem. B 111 13877
[8] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251
[9] Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett. 9 4260
[10] Liu Z, Liu J and Zhao J 2017 Nano Res. 10 1977
[11] Zhang X, Wang B, Guo Y, Zhang Y, Chen Y and Wang J 2019 Nanoscale Horiz. 4 859
[12] Kan E, Li Z, Yang J and Hou J G 2008 J. Am. Chem. Soc. 130 4224
[13] Dutta S, Manna A K and Pati S K 2009 Phys. Rev. Lett. 102 096601
[14] Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602
[15] Jiang P, Kang L, Zheng X, Zeng Z and Sanvito S 2020 Phys. Rev. B 102 195408
[16] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[17] Tang C, Zhang L, Sanvito S and Du A 2020 J. Mater. Chem. C 8 7034
[18] Garnett E, Mai L and Yang P 2019 Chem. Rev. 119 8955
[19] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[20] Qu Y, Arguilla M Q, Zhang Q, He X and Dinca M 2021 J. Am. Chem. Soc. 143 19551
[21] Fu L, Shang C, Zhou S, Guo Y and Zhao J 2022 Appl. Phys. Lett. 120 163102
[22] Li X, Lv H, Dai J, Ma L, Zeng X C, Wu X and Yang J 2017 J. Am. Chem. Soc. 139 6290
[23] Kumar S, Kumawat R L and Pathak B 2019 J. Phys. Chem. C 123 15717
[24] Li S S, Wang Y P, Hu S J, Chen D, Zhang C W and Yan S S 2018 Nanoscale 10 15545
[25] Zhang J, Fu C, Song S, Du H, Zhao D, Huang H, Zhang L, Guan J, Zhang Y, Zhao X, Ma C, Jia C L and Tomanek D 2020 Nano Lett. 20 1280
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[31] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[32] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[33] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[35] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[36] Ozaki T, Nishio K and Kino H 2010 Phys. Rev. B 81 035116
[37] Ozaki T 2007 Phys. Rev. B 75 035123
[38] Kanamori J 1960 J. Appl. Phys. 31 S14
[39] Goodenough J B 1955 Phys. Rev. 100 564
[40] Anderson P W 1959 Phys. Rev. 115 2
[41] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[42] Chen Y C, Hsu S H, Kaun C C and Lin M T 2014 J. Phys. Chem. C 118 21199
[43] Zhou B, Yang B, Ng M F, Sullivan B M, Tan B C V and Shen L 2018 J. Am. Chem. Soc. 130 4023
[44] Zhu S, Fu H, Gao G, Wang S, Ni Y and Yao K 2013 J. Chem. Phys. 139 024309
[45] Hu J, Xiong W, Huang P, Wang Y, Cai C and Wang J 2020 Appl. Surf. Sci. 528 146957
[46] Hu Y, Li S S, Ji W X, Zhang C W, Ding M, Wang P J and Yan S S 2020 J. Phys. Chem. Lett. 11 485
[47] Miyano R, Kimura K, Izumi K, Takikawa H and Sakakibara T 2000 Vacuum 59 159
[48] Jin Q, Cheng H, Wang Z, et al. 2021 Adv. Mater. 33 2005920
[49] Jin Q, Wang Z, Zhang Q, Zhao J, Cheng H, Lin S, Chen S, Chen S, Guo H, He M, Ge C, Wang C, Wang J O, Gu L, Wang S, Yang H, Jin K L and Guo E J 2021 Phys. Rev. Mater. 5 023604
[50] Jin Q, Zhao J, Roldan M A, Qi W, Lin S, Chen S, Hong H, Fan Y, Rong D, Guo H, Ge C, Wang C, Wang J O, Wang S, Jin K J and Guo E J 2022 Appl. Phys. Lett. 120 073103
[51] Meng C, Yang L, Wu Y, Tan J, Dang W, He X and Ma X 2019 J. Nucl. Mater. 515 354
[52] Zhang M, Li M K, Kim K H and Pan F 2009 Appl. Surf. Sci. 255 9200
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[14] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[15] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
No Suggested Reading articles found!