CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect |
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文)† |
School of Physics and Technology, University of Jinan, Jinan 250022, China |
|
|
Abstract Manipulation of the valley degree of freedom provides a new path for quantum information technology, but the real intrinsic large valley-polarization materials are rarely reported up to date. Here, we perform first-principles calculations to predict a class of 2H-phase single layer (SL) materials Lu$X_{2}$ ($X ={\rm Cl}$, Br, I) to be ideal candidates. SL-Lu$X_{2}$ are ferrovalley materials with a giant valley-polarization of 55 meV-148 meV as a result of its large spin-orbital coupling (SOC) and intrinsic ferromagnetism (FM). The magnetic transition temperatures of SL-LuI$_{2}$ and SL-LuCl$_{2}$ are estimated to be 89 K-124 K, with a sizable magnetic anisotropy at out-of-plane direction. Remarkably, the anomalous valley Hall effect (AVHE) can be controlled in SL-Lu$X_{2}$ when an external electric field is applied. Moreover, the intrinsic valley-polarization of SL-LuI$_{2}$ is highly robust for biaxial strain. These findings provide a promising ferrovalley material system for the experimentation of valleytronics and subsequent applications.
|
Received: 04 June 2022
Revised: 14 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
Fund: Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant No. 52173283). |
Corresponding Authors:
Chang-Wen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文) Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect 2023 Chin. Phys. B 32 037306
|
[1] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [2] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [3] Ding J, Qiao Z, Feng W, Yao Y and Niu Q 2011 Phys. Rev. B 84 195444 [4] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [5] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [6] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612 [7] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435 [8] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433 [9] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [10] Zhou B, Li Z, Wang J, Niu X and Luan C 2019 Nanoscale 11 13567 [11] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148 [12] Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotechnol. 12 883 [13] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [14] Liu J, Hou W J, Cheng C, Fu H X, Sun J T and Meng S 2017 J. Phys. Condens. Matter 29 255501 [15] Zhao P, Ma Y, Wang H, Huang B, Kou L and Dai Y 2020 arXiv: 2003.04561 [16] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738 [17] Zhao P, Ma Y, Lei C, Wang H, Huang B and Dai Y 2019 Appl. Phys. Lett. 115 261605 [18] Jiang P, Kang L, Li Y L, Zheng X, Zeng Z and Sanvito S 2021 Phys. Rev. B 104 035430 [19] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421 [20] Zhao W, Dong B, Guo Z, Su G, Gao R, Wang W and Cao L 2016 Chem. Commun. 52 9228 [21] Coelho P M, Nguyen Cong K, Bonilla M, Kolekar S, Phan M H, Avila J, Asensio M C, Oleynik I I and Batzill M 2019 J. Phys. Chem. C 123 14089 [22] Feng J, Biswas D, Rajan A, et al. 2018 Nano Lett. 18 4493 [23] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121 [24] Liu W, Tong J, Deng L, Yang B, Xie G, Qin G, Tian F and Zhang X 2021 Mater. Today Phys. 21 100514 [25] Guo S D, Zhu J X, Mu W Q and Liu B G 2021 Phys. Rev. B 104 224428 [26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [27] Blochl P E 1994 Phys. Rev. B Condens. Matter 50 17953 [28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [30] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 [31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [32] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [33] Steiner S, Khmelevskyi S, Marsmann M and Kresse G 2016 Phys. Rev. B 93 224425 [34] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [35] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [36] Bucher D, Pierce L C, McCammon J A and Markwick P R 2011 J. Chem. Theory Comput. 7 890 [37] Nosé S 1984 Mol Phys. 52 255 [38] Nosé S 1984 J. Chem. Phys. 81 511 [39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Phys. Commun. 178 685 [40] Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270 [41] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [42] Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300 [43] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [44] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251 [45] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429 [46] Fernandez J F, Ferreira M F and Stankiewicz J 1986 Phys. Rev. B Condens. Matter 34 292 [47] Peng R, Ma Y, Xu X, He Z, Huang B and Dai Y 2020 Phys. Rev. B 102 035412 [48] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643 [49] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlogl U 2016 Adv. Mater. 28 959 [50] Ma X, Sun L, Liu J, Feng X, Li W, Hu J and Zhao M 2020 Phys. Status Solidi 14 2000008 [51] Oh J, Le M, Nahm H H, et al. 2016 Nat. Commun. 7 13146 [52] Song G and Zhang W 2016 Sci. Rep. 6 20133 [53] Zhou S, Lou B, Ma C G and Min Y 2022 J. Lumin. 241 118479 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|