Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037306    DOI: 10.1088/1674-1056/ac89d6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect

Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文)
School of Physics and Technology, University of Jinan, Jinan 250022, China
Abstract  Manipulation of the valley degree of freedom provides a new path for quantum information technology, but the real intrinsic large valley-polarization materials are rarely reported up to date. Here, we perform first-principles calculations to predict a class of 2H-phase single layer (SL) materials Lu$X_{2}$ ($X ={\rm Cl}$, Br, I) to be ideal candidates. SL-Lu$X_{2}$ are ferrovalley materials with a giant valley-polarization of 55 meV-148 meV as a result of its large spin-orbital coupling (SOC) and intrinsic ferromagnetism (FM). The magnetic transition temperatures of SL-LuI$_{2}$ and SL-LuCl$_{2}$ are estimated to be 89 K-124 K, with a sizable magnetic anisotropy at out-of-plane direction. Remarkably, the anomalous valley Hall effect (AVHE) can be controlled in SL-Lu$X_{2}$ when an external electric field is applied. Moreover, the intrinsic valley-polarization of SL-LuI$_{2}$ is highly robust for biaxial strain. These findings provide a promising ferrovalley material system for the experimentation of valleytronics and subsequent applications.
Keywords:  intrinsic ferrovalley      anomalous valley Hall effect      first-principles calculations  
Received:  04 June 2022      Revised:  14 August 2022      Accepted manuscript online:  16 August 2022
PACS:  73.43.-f (Quantum Hall effects)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
Fund: Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant No. 52173283).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文) Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect 2023 Chin. Phys. B 32 037306

[1] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[2] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[3] Ding J, Qiao Z, Feng W, Yao Y and Niu Q 2011 Phys. Rev. B 84 195444
[4] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[5] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[6] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612
[7] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435
[8] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[9] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[10] Zhou B, Li Z, Wang J, Niu X and Luan C 2019 Nanoscale 11 13567
[11] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[12] Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotechnol. 12 883
[13] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612
[14] Liu J, Hou W J, Cheng C, Fu H X, Sun J T and Meng S 2017 J. Phys. Condens. Matter 29 255501
[15] Zhao P, Ma Y, Wang H, Huang B, Kou L and Dai Y 2020 arXiv: 2003.04561
[16] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[17] Zhao P, Ma Y, Lei C, Wang H, Huang B and Dai Y 2019 Appl. Phys. Lett. 115 261605
[18] Jiang P, Kang L, Li Y L, Zheng X, Zeng Z and Sanvito S 2021 Phys. Rev. B 104 035430
[19] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421
[20] Zhao W, Dong B, Guo Z, Su G, Gao R, Wang W and Cao L 2016 Chem. Commun. 52 9228
[21] Coelho P M, Nguyen Cong K, Bonilla M, Kolekar S, Phan M H, Avila J, Asensio M C, Oleynik I I and Batzill M 2019 J. Phys. Chem. C 123 14089
[22] Feng J, Biswas D, Rajan A, et al. 2018 Nano Lett. 18 4493
[23] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121
[24] Liu W, Tong J, Deng L, Yang B, Xie G, Qin G, Tian F and Zhang X 2021 Mater. Today Phys. 21 100514
[25] Guo S D, Zhu J X, Mu W Q and Liu B G 2021 Phys. Rev. B 104 224428
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Blochl P E 1994 Phys. Rev. B Condens. Matter 50 17953
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[30] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[33] Steiner S, Khmelevskyi S, Marsmann M and Kresse G 2016 Phys. Rev. B 93 224425
[34] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[35] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[36] Bucher D, Pierce L C, McCammon J A and Markwick P R 2011 J. Chem. Theory Comput. 7 890
[37] Nosé S 1984 Mol Phys. 52 255
[38] Nosé S 1984 J. Chem. Phys. 81 511
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Phys. Commun. 178 685
[40] Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270
[41] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[42] Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300
[43] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[44] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251
[45] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429
[46] Fernandez J F, Ferreira M F and Stankiewicz J 1986 Phys. Rev. B Condens. Matter 34 292
[47] Peng R, Ma Y, Xu X, He Z, Huang B and Dai Y 2020 Phys. Rev. B 102 035412
[48] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643
[49] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlogl U 2016 Adv. Mater. 28 959
[50] Ma X, Sun L, Liu J, Feng X, Li W, Hu J and Zhao M 2020 Phys. Status Solidi 14 2000008
[51] Oh J, Le M, Nahm H H, et al. 2016 Nat. Commun. 7 13146
[52] Song G and Zhang W 2016 Sci. Rep. 6 20133
[53] Zhou S, Lou B, Ma C G and Min Y 2022 J. Lumin. 241 118479
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[10] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[11] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[12] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[13] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[14] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[15] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
No Suggested Reading articles found!