Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027101    DOI: 10.1088/1674-1056/aca082
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice

Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文)
School of Physics and Technology, University of Jinan, Jinan 250022, China
Abstract  The quantum anomalous Hall effect (QAHE) has special quantum properties that are ideal for possible future spintronic devices. However, the experimental realization is rather challenging due to its low Curie temperature and small non-trivial bandgap in two-dimensional (2D) materials. In this paper, we demonstrate through first-principles calculations that monolayer Co$_{2}$Te material is a promising 2D candidate to realize QAHE in practice. Excitingly, through Monte Carlo simulations, it is found that the Curie temperature of single-layer Co$_{2}$Te can reach 573 K. The band crossing at the Fermi level in monolayer Co$_{2}$Te is opened when spin-orbit coupling is considered, which leads to QAHE with a sizable bandgap of $E_{\rm g} = 96$ meV, characterized by the non-zero Chern number $\left( C = 1 \right)$ and a chiral edge state. Therefore, our findings not only enrich the study of quantum anomalous Hall effect, but also broaden the horizons of the spintronics and topological nanoelectronics applications.
Keywords:  quantum anomalous Hall effect      spin-polarizationm Chern insulator      first-principles calculations  
Received:  24 July 2022      Revised:  03 November 2022      Accepted manuscript online:  07 November 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.43.-f (Quantum Hall effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant No. 52173238).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文) First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice 2023 Chin. Phys. B 32 027101

[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[3] Chang C Z, Zhang J S, Feng X, et al. 2013 Science 340 167
[4] Zhang H, Lazo C, Blügel S, Heinze S and Mokrousov Y 2012 Phys. Rev. Lett. 108 056802
[5] Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802
[6] Kim C K, Lee I, Lee J, Billinge S, Zhong R, Schneeloch J, Liu T, Tranquada J, Gu G and Davis J C S 2015 Proc. Natl. Acad. Sci. USA 112 1316
[7] Lachman E O, Young A F, Richardella A, Cuppens J, Naren H R, Anahory Y, Meltzer A Y, Kandala A, Kempinger S, Myasoedov Y, Huber M E, Samarth N and Zeldov E 2015 Sci. Adv. 1 e1500740
[8] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[10] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L and Feng J 2012 Nat. Commun. 3 887
[11] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766
[12] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Nature 488 627
[13] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[14] Zhang H J, Li Y F, Hou J H, Tu K X and Chen Z F 2016 J. Am. Chem. Soc. 138 5644
[15] Zhang L, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2019 Nanoscale 11 5666
[16] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[17] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443
[18] Groot R A D, Mueller F M, Engen P G V and Buschow K H J 1984 J. Appl. Phys. 55 2151
[19] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Phys. Rev. Lett. 81 1953
[20] Mavropoulos P, Ležaić M, Stefan and Blügel S 2005 Phys. Rev. B 72 174428
[21] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[22] Wu J S, Liu J and Liu X J 2014 Phys. Rev. Lett. 113 136403
[23] Wang Y P, Li S S, Zhang C W, Zhang S F, Ji W X, Li P and Wang P J 2018 J. Mater. Chem. C 6 10284
[24] Wu S C, Shan G C and Yan B H 2014 Phys. Rev. Lett. 113 256401
[27] Zhou P, Sun C Q and Sun L Z 2016 Nano Lett. 16 6235
[28] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[29] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[30] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[31] Li X, Cao T, Niu Q, Shi J R and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[32] Cai T Y, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434
[33] Chen X B, Liu Y Z, Gu B L, Duan W H and Liu F 2014 Phys. Rev. B 90 121403
[34] Garrity K F and Vanderbilt D 2014 Phys. Rev. B 90 121103
[35] Zhang J Y, Zhao B, Xue Y, Zhou T and Yang Z Q 2018 Phys. Rev. B 97 125430
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[40] Wang X J, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118
[41] Brouder C, Panati G, Calandra M, Mourougane C and Marzari N 2007 Phys. Rev. Lett. 98 046402
[42] López Sancho M P, López Sancho J M and Rubio J 1984 J. Phys. F 14 1205
[43] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Li P and Wang P J 2017 J. Mater. Chem. C 5 8504
[44] Ertekin E, Chrzan D C and Daw M S 2009 Phys. Rev. B 79 155421
[45] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[46] Li X Y, Ji W X, Wang P J and Zhang C W 2021 Nanoscale Adv. 3 847
[47] Yao Y G, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E G and Niu Q 2004 Phys. Rev. Lett. 92 037204
[48] Yao Y and Fang Z 2005 Phys. Rev. Lett. 95 156601
[49] Taherinejad M, Garrity K F and Vanderbilt D 2013 Phys. Rev. B 89 115102
[50] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 178 685
[51] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and D M Treger 2001 Science. 294 1488
[52] Felser C, Fecher G H and Balke B 2007 Angew. Chem. Int. Ed. 46 668
[53] Mavropoulos P, Sato K, Zeller R, Dederichs P H, Popescu V and Ebert H 2004 Phys. Rev. B 69 054424
[54] Huang B, Liu F, Wu J, Gu B L and Duan W H 2008 Phys. Rev. B 77 153411
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
No Suggested Reading articles found!