Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036104    DOI: 10.1088/1674-1056/ac16cb

First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice

Shan Feng(冯山)1,†, Ming Jiang(姜明)1,†, Qi-Hang Qiu(邱启航)1, Xiang-Hua Peng(彭祥花)1, Hai-Yan Xiao(肖海燕)1,‡, Zi-Jiang Liu(刘子江)2, Xiao-Tao Zu(祖小涛)1, and Liang Qiao(乔梁)1
1 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Department of Physics, Lanzhou City University, Lanzhou 730070, China
Abstract  When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the properties of point defects like vacancies and interstitials is essential for the successful application of semiconductor materials. In the present study, first-principles calculations are carried out to explore the stability of point defects in GaAs/Al0.5Ga0.5As superlattice and their effects on electronic properties. The results show that the interstitial defects and Frenkel pair defects are relatively difficult to form, while the antisite defects are favorably created generally. Besides, the existence of point defects generally modifies the electronic structure of GaAs/Al0.5Ga0.5As superlattice significantly, and most of the defective SL structures possess metallic characteristics. Considering the stability of point defects and carrier mobility of defective states, we propose an effective strategy that AlAs, GaAs, and AlGa antisite defects are introduced to improve the hole or electron mobility of GaAs/Al0.5Ga0.5As superlattice. The obtained results will contribute to the understanding of the radiation damage effects of the GaAs/AlGaAs superlattice, and provide a guidance for designing highly stable and durable semiconductor superlattice-based electronics and optoelectronics for extreme environment applications.
Keywords:  first-principles calculations      GaAs/Al0.5Ga0.5As superlattice      point defects      electronic properties  
Received:  26 April 2021      Revised:  10 July 2021      Accepted manuscript online:  22 July 2021
PACS:  61.82.Fk (Semiconductors)  
  61.72.uj (III-V and II-VI semiconductors)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: Project supported by the NSAF Joint Foundation of China (Grant No. U1930120), the Key Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA211), and the National Natural Science Foundation of China (Grant No. 11774044).
Corresponding Authors:  Hai-Yan Xiao     E-mail:

Cite this article: 

Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁) First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice 2022 Chin. Phys. B 31 036104

[1] Hamdi A H, Tandon J L, Vreeland T and Nicolet M A 2011 MRS Online Proceeding Library Archive 37 319
[2] Barkissy D, Nafidi A, Boutramine A, Charifi H, Elanique A and Massaq M 2016 J. Low Temp. Phys. 182 185
[3] Zheng Z, Zu X T, Zhang Y and Zhou W 2020 Mater. Today Phys. 15 100262
[4] Zhang S, Wang J F, Wen S Z, Jiang M, Xiao H Y, Ding X, Wang N, Li M L, Zu X T, Li S A, Yam C Y, Huang B and Qiao L 2021 Phys. Rev. Lett. 126 176401
[5] Tseng W, Pellegrino J, Kim J, Thurber R, Comas J, Papanicolou N and Prokes S 1992 J. Electrochem. Soc. 139 1219
[6] Schrottke L, Lu X, Rozas G, Biermann K and Grahn H T 2016 Appl. Phys. Lett. 108 102102
[7] Irber D M, Seidl J, Carrad D J, Becker J, Jeon N, Loitsch B, Winnerl J, Matich S, Doblinger M, Tang Y, Morkotter S, Abstreiter G, Finley J J, Grayson M, Lauhon LJ and Koblmuller G 2017 Nano Lett. 17 4886
[8] Cui J G, Zhang X, Yan X, Li J S, Huang Y Q and Ren M X 2014 Acta Phys. Sin. 63 136103 (in Chinese)
[9] Plis E A, Gautam N, Kutty M N, Myers S, Klein B, Schuler-Sandy T, Naydenkov M and Krishna S 2011 Nanophotonics and Macrophotonics for Space Environments V 8164 893706
[10] Lin T T, Wang L, Wang K, Grange T and Hirayama H 2018 Appl. Phys. Express 11 112702
[11] Perreault C S, Vohra Y K, dos Santos A M and Molaison J J 2020 J. Magn. Magn. Mater. 507 5
[12] Feng S S, Lv S S, Chen L and Li Z C 2021 Chin. Phys. B 30 056105
[13] Dong L F, Yang Y J, Fan W L, Han Y, Shuai W and Hong X J 2010 Acta Phys. Sin. 59 1367 (in Chinese)
[14] Jiang M, Xiao H Y, Peng S M, Yang G X, Gong H F, Liu Z J, Qiao L and Zu X T 2019 J. Nucl. Mater. 516 228
[15] Jiang M, Xiao H Y, Peng S M, Qiao L, Yang G X, Liu Z J and Zu X T 2018 Nanoscale Res. Lett. 13 301
[16] Takash, Mimura, Satoshi, Hiyamizu, Toshio, Fujii, Kazuo and Nanbu 1980 Jpn. J. Appl. Phys. 19 5
[17] Hosako I, Sekine N, Yasuda H and Hirakawa K 2006 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics p. 564
[18] Ren L and Chang B K 2011 Chin. Phys. B 20 087308
[19] Peter A J and Lakshminarayana V 2008 Chin. Phys. Lett. 25 3021
[20] Billaha A and Das M K 2016 Opto-Electron. Rev. 24 25
[21] Goryacheva V D, Mironova M S and Komkov O S 2018 International Conference Physica Spb 1038 012124
[22] Klos J W and Krawczyk M 2009 J. Appl. Phys. 106 510
[23] Billaha A and Das M K 2016 Opto-Electron. Rev. 24 25
[24] Nobuyuki, Tanaka, Tomonori and Ishikawa 1994 J. Electron. Mater. 23 341
[25] Laiadi W, Meftah A and Sengouga N 2013 Superlattices and Microstructures 58 44
[26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[27] Qiao L, Zhang S, Xiao H Y, Singh D J, Zhang L K H, Liu Z J, Zu X T and Li S 2018 J. Mater. Chem. C 6 1239
[28] Posselt M, Gao F, Weber W J and Belko V 2004 J. Phys.:Condens. Matter 16 1307
[29] Jenčič I, Bench M W, Robertson I M and Kirk M A 1991 J. Appl. Phys. 69 128
[30] Ahmed R, Hashemifar S J, Akbarzadeh H, Ahmed M and Fazal E A 2007 Comput. Mater. Sci. 39 580
[31] Mao Y, Liang X X, Zhao G J and Song T L 2014 J. Phys.:Conf. Ser. 490 012172
[32] Campo V L and Cococcioni M 2010 J. Phys.:Condens. Matter 22 055602
[33] Vegard L Z 1921 Zeitschrift für Physik A Hadrons and Nuclei 5 17
[34] Ribeiro M, Fonseca L R C and Ferreira L G 2011 Europhys. Lett. 94 27001
[35] Varshni Y P 1967 Physica 34 149
[36] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[37] Degheidy A R and Elkenany E B 2012 Mater. Sci. Semicond. Process. 15 505
[38] Ghigna P, Barbi G B, Chiodelli G, Spinolo G, Malavasi L and Flor G 2000 J. Solid State Chem. 153 231
[39] Tsevas K, Smith J A, Kumar V, Rodenburg C, Fakis M, Yusoff A B, Vasilopoulou M, Lidzey D G, Nazeeruddin M K and Dunbar A D F 2021 Chem. Mater. 33 554
[40] Kilroy W P, Ferrando W A and Dallek S 2001 J. Power Sources 97-8 336
[41] Gorai S, Ganguli D and Chaudhuri S 2005 Mater. Lett. 59 826
[42] Zdorovets M V, Kurlov A S and Kozlovskiy A L 2020 Surf. Coatings Technol. 386 125499
[43] Tripathi N, Rath S, Kulriya P K, Khan S A, Kabiraj D and Avasthi D K 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3335
[44] Ieshkin A E, Kireev D S, Tatarintsev A A, Chernysh V S, Senatulin B R and Skryleva E A 2020 Surf. Sci. 700 121637
[45] Xiao Z W, Meng W W, Wang J B and Yan Y F 2016 Chemsuschem 9 2628
[46] Baierle R J, Piquini P, Neves L P and Miwa R H 2006 Phys. Rev. B 74 155425
[47] Shu H B, Yang X D, Liang P, Cao D and Chen X S 2016 J. Phys. Chem. C 120 22088
[48] Cheng J P, Wang Y J, McCombe B D and Schaff W 1993 Phys. Rev. Lett. 70 489
[49] Nazir S, Kahaly M U and Schwingenschloegl U 2012 Appl. Phys. Lett. 100 201607
[50] Feng S, Wang N, Li M L, Xiao H Y, Liu Z J, Zu X T and Qiao L 2021 J. Alloys Compd. 861 157984
[51] Tan, M R, Liu Q H, Sui N, Kang Z H, Zhang L Q, Zhang H Z, Wang W Q, Zhou Q and Wang Y H 2019 Chin. Phys. B 28 056106
[52] Włodzimierz and Nakwask 1995 Physica B 210 1
[53] Gonzalez B, Palankovski V, Kosina H, Hernandez A and Selberherr S 1999 Solid-State Electron. 43 1791
[54] Stillman G E, Wolfe C M and Dimmock J O 1970 J. Phys. Chem. Solids 31 1199
[55] Kusters R M, Wittekamp F A, Singleton J, Perenboom J, Jones G A C, Ritchie D A, Frost J E F and Andre J P 1992 Phys. Rev. B 46 10207
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[13] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
No Suggested Reading articles found!