CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice |
Shan Feng(冯山)1,†, Ming Jiang(姜明)1,†, Qi-Hang Qiu(邱启航)1, Xiang-Hua Peng(彭祥花)1, Hai-Yan Xiao(肖海燕)1,‡, Zi-Jiang Liu(刘子江)2, Xiao-Tao Zu(祖小涛)1, and Liang Qiao(乔梁)1 |
1 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 Department of Physics, Lanzhou City University, Lanzhou 730070, China |
|
|
Abstract When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the properties of point defects like vacancies and interstitials is essential for the successful application of semiconductor materials. In the present study, first-principles calculations are carried out to explore the stability of point defects in GaAs/Al0.5Ga0.5As superlattice and their effects on electronic properties. The results show that the interstitial defects and Frenkel pair defects are relatively difficult to form, while the antisite defects are favorably created generally. Besides, the existence of point defects generally modifies the electronic structure of GaAs/Al0.5Ga0.5As superlattice significantly, and most of the defective SL structures possess metallic characteristics. Considering the stability of point defects and carrier mobility of defective states, we propose an effective strategy that AlAs, GaAs, and AlGa antisite defects are introduced to improve the hole or electron mobility of GaAs/Al0.5Ga0.5As superlattice. The obtained results will contribute to the understanding of the radiation damage effects of the GaAs/AlGaAs superlattice, and provide a guidance for designing highly stable and durable semiconductor superlattice-based electronics and optoelectronics for extreme environment applications.
|
Received: 26 April 2021
Revised: 10 July 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
Fund: Project supported by the NSAF Joint Foundation of China (Grant No. U1930120), the Key Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA211), and the National Natural Science Foundation of China (Grant No. 11774044). |
Corresponding Authors:
Hai-Yan Xiao
E-mail: hyxiao@uestc.edu.cn
|
Cite this article:
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁) First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice 2022 Chin. Phys. B 31 036104
|
[1] Hamdi A H, Tandon J L, Vreeland T and Nicolet M A 2011 MRS Online Proceeding Library Archive 37 319 [2] Barkissy D, Nafidi A, Boutramine A, Charifi H, Elanique A and Massaq M 2016 J. Low Temp. Phys. 182 185 [3] Zheng Z, Zu X T, Zhang Y and Zhou W 2020 Mater. Today Phys. 15 100262 [4] Zhang S, Wang J F, Wen S Z, Jiang M, Xiao H Y, Ding X, Wang N, Li M L, Zu X T, Li S A, Yam C Y, Huang B and Qiao L 2021 Phys. Rev. Lett. 126 176401 [5] Tseng W, Pellegrino J, Kim J, Thurber R, Comas J, Papanicolou N and Prokes S 1992 J. Electrochem. Soc. 139 1219 [6] Schrottke L, Lu X, Rozas G, Biermann K and Grahn H T 2016 Appl. Phys. Lett. 108 102102 [7] Irber D M, Seidl J, Carrad D J, Becker J, Jeon N, Loitsch B, Winnerl J, Matich S, Doblinger M, Tang Y, Morkotter S, Abstreiter G, Finley J J, Grayson M, Lauhon LJ and Koblmuller G 2017 Nano Lett. 17 4886 [8] Cui J G, Zhang X, Yan X, Li J S, Huang Y Q and Ren M X 2014 Acta Phys. Sin. 63 136103 (in Chinese) [9] Plis E A, Gautam N, Kutty M N, Myers S, Klein B, Schuler-Sandy T, Naydenkov M and Krishna S 2011 Nanophotonics and Macrophotonics for Space Environments V 8164 893706 [10] Lin T T, Wang L, Wang K, Grange T and Hirayama H 2018 Appl. Phys. Express 11 112702 [11] Perreault C S, Vohra Y K, dos Santos A M and Molaison J J 2020 J. Magn. Magn. Mater. 507 5 [12] Feng S S, Lv S S, Chen L and Li Z C 2021 Chin. Phys. B 30 056105 [13] Dong L F, Yang Y J, Fan W L, Han Y, Shuai W and Hong X J 2010 Acta Phys. Sin. 59 1367 (in Chinese) [14] Jiang M, Xiao H Y, Peng S M, Yang G X, Gong H F, Liu Z J, Qiao L and Zu X T 2019 J. Nucl. Mater. 516 228 [15] Jiang M, Xiao H Y, Peng S M, Qiao L, Yang G X, Liu Z J and Zu X T 2018 Nanoscale Res. Lett. 13 301 [16] Takash, Mimura, Satoshi, Hiyamizu, Toshio, Fujii, Kazuo and Nanbu 1980 Jpn. J. Appl. Phys. 19 5 [17] Hosako I, Sekine N, Yasuda H and Hirakawa K 2006 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics p. 564 [18] Ren L and Chang B K 2011 Chin. Phys. B 20 087308 [19] Peter A J and Lakshminarayana V 2008 Chin. Phys. Lett. 25 3021 [20] Billaha A and Das M K 2016 Opto-Electron. Rev. 24 25 [21] Goryacheva V D, Mironova M S and Komkov O S 2018 International Conference Physica Spb 1038 012124 [22] Klos J W and Krawczyk M 2009 J. Appl. Phys. 106 510 [23] Billaha A and Das M K 2016 Opto-Electron. Rev. 24 25 [24] Nobuyuki, Tanaka, Tomonori and Ishikawa 1994 J. Electron. Mater. 23 341 [25] Laiadi W, Meftah A and Sengouga N 2013 Superlattices and Microstructures 58 44 [26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [27] Qiao L, Zhang S, Xiao H Y, Singh D J, Zhang L K H, Liu Z J, Zu X T and Li S 2018 J. Mater. Chem. C 6 1239 [28] Posselt M, Gao F, Weber W J and Belko V 2004 J. Phys.:Condens. Matter 16 1307 [29] Jenčič I, Bench M W, Robertson I M and Kirk M A 1991 J. Appl. Phys. 69 128 [30] Ahmed R, Hashemifar S J, Akbarzadeh H, Ahmed M and Fazal E A 2007 Comput. Mater. Sci. 39 580 [31] Mao Y, Liang X X, Zhao G J and Song T L 2014 J. Phys.:Conf. Ser. 490 012172 [32] Campo V L and Cococcioni M 2010 J. Phys.:Condens. Matter 22 055602 [33] Vegard L Z 1921 Zeitschrift für Physik A Hadrons and Nuclei 5 17 [34] Ribeiro M, Fonseca L R C and Ferreira L G 2011 Europhys. Lett. 94 27001 [35] Varshni Y P 1967 Physica 34 149 [36] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045 [37] Degheidy A R and Elkenany E B 2012 Mater. Sci. Semicond. Process. 15 505 [38] Ghigna P, Barbi G B, Chiodelli G, Spinolo G, Malavasi L and Flor G 2000 J. Solid State Chem. 153 231 [39] Tsevas K, Smith J A, Kumar V, Rodenburg C, Fakis M, Yusoff A B, Vasilopoulou M, Lidzey D G, Nazeeruddin M K and Dunbar A D F 2021 Chem. Mater. 33 554 [40] Kilroy W P, Ferrando W A and Dallek S 2001 J. Power Sources 97-8 336 [41] Gorai S, Ganguli D and Chaudhuri S 2005 Mater. Lett. 59 826 [42] Zdorovets M V, Kurlov A S and Kozlovskiy A L 2020 Surf. Coatings Technol. 386 125499 [43] Tripathi N, Rath S, Kulriya P K, Khan S A, Kabiraj D and Avasthi D K 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 3335 [44] Ieshkin A E, Kireev D S, Tatarintsev A A, Chernysh V S, Senatulin B R and Skryleva E A 2020 Surf. Sci. 700 121637 [45] Xiao Z W, Meng W W, Wang J B and Yan Y F 2016 Chemsuschem 9 2628 [46] Baierle R J, Piquini P, Neves L P and Miwa R H 2006 Phys. Rev. B 74 155425 [47] Shu H B, Yang X D, Liang P, Cao D and Chen X S 2016 J. Phys. Chem. C 120 22088 [48] Cheng J P, Wang Y J, McCombe B D and Schaff W 1993 Phys. Rev. Lett. 70 489 [49] Nazir S, Kahaly M U and Schwingenschloegl U 2012 Appl. Phys. Lett. 100 201607 [50] Feng S, Wang N, Li M L, Xiao H Y, Liu Z J, Zu X T and Qiao L 2021 J. Alloys Compd. 861 157984 [51] Tan, M R, Liu Q H, Sui N, Kang Z H, Zhang L Q, Zhang H Z, Wang W Q, Zhou Q and Wang Y H 2019 Chin. Phys. B 28 056106 [52] Włodzimierz and Nakwask 1995 Physica B 210 1 [53] Gonzalez B, Palankovski V, Kosina H, Hernandez A and Selberherr S 1999 Solid-State Electron. 43 1791 [54] Stillman G E, Wolfe C M and Dimmock J O 1970 J. Phys. Chem. Solids 31 1199 [55] Kusters R M, Wittekamp F A, Singleton J, Perenboom J, Jones G A C, Ritchie D A, Frost J E F and Andre J P 1992 Phys. Rev. B 46 10207 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|