CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K |
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成)†, and Zhong-Yi Lu(卢仲毅)‡ |
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract By using first-principles electronic structure calculations, we propose a two-dimensional ferromagnetic semiconductor Li2NiSe2 with a Curie temperature above 200 K. The structure of monolayer Li2NiSe2 is dynamically stable, which is derived from the synthesized prototype compound Li2NiO2 and can be denoted as Li-decorated 1T-type NiSe2. The Ni-Se-Ni ferromagnetic superexchange dominates the magnetic couplings between the Ni atoms, which can be understood in the frame of the Goodenough-Kanamori-Anderson (GKA) rules. Our systematic study of monolayer Li2NiSe2 enables its promising applications in spintronics and suggests a new choice to design two-dimensional ferromagnetic semiconductors.
|
Received: 17 September 2022
Revised: 04 November 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0308603), and the National Natural Science Foundation of China (Grant No. 11934020). Computational resources were provided by the Physical Laboratory of High Performance Computing at Renmin University of China. |
Corresponding Authors:
Huan-Cheng Yang, Zhong-Yi Lu
E-mail: hcyang@ruc.edu.cn;zlu@ruc.edu.cn
|
Cite this article:
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅) Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K 2023 Chin. Phys. B 32 037501
|
[1] Li X and Yang J 2017 WIREs Comput. Mol. Sci. 7 1 [2] Fert A 2008 Rev. Mod. Phys. 80 1517 [3] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S and Chang C R 2017 WIREs Comput. Mol. 7 1 [4] Zhao Y, Zhang J J, Yuan S and Chen Z 2019 Adv. Funct. Mater. 29 1901420 [5] Gong C and Zhang X 2019 Science 363 706 [6] Li H, Ruan S and Zeng Y 2019 Adv. Mater. 31 1900065 [7] Zhao Y, Gu J and Chen Z 2019 Adv. Funct. Mater. 29 1904782 [8] Zhang S, Xu R, Duan W and Zou X 2019 Adv. Funct. Mater. 29 1808380 [9] Bader S D and Parkin S S 2010 Annu. Rev. Condens. Matter Phys. 1 71 [10] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnr S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [11] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [12] Zhang Z, Shang J, Jiang C, Rasmita A, Gao W and Yu T 2019 Nano Lett. 19 3138 [13] Cai X, Song T, Wilson N P, Clark G, He M, Zhang X, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H and Xu X 2019 Rev. Mod. Phys. 19 3993 [14] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [15] Li X and Yang J 2014 J. Mater. Chem. C 2 7071 [16] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 [17] Zhuang H L, Xie Y, Kent P R C and Ganesh P 2015 Phys. Rev. B 92 035407 [18] Chittari B L, Lee D, Banerjee N, MacDonald A H, Hwang E and Jung J 2020 Phys. Rev. B 101 085415 [19] Ren Y, Ge Y, Wan W, Li Q and Liu Y 2019 J. Phys.: Condens. Matter 32 015701 [20] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457 [21] Kulish V V and Huang W 2017 J. Mater. Chem. C 5 8734 [22] Botana A S and Norman M R 2019 Phys. Rev. Mater. 3 044001 [23] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695 [24] Zhang H, Liu L M and Lau W M 2013 J. Mater. Chem. A 1 10821 [25] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429 [26] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 [27] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B 92 214419 [28] You J Y, Zhang Z, Dong X J, Gu B and Su G 2020 Phys. Rev. Res. 2 013002 [29] You J Y, Zhang Z, Gu B and Su G 2019 Phys. Rev. Appl. 12 024603 [30] Xiao J, Legut D, Luo W, Guo H, Liu X, Zhang R and Zhang Q 2020 Phys. Rev. B 101 014431 [31] Rado G T and Suhl H 1963 Magnetism (New York: Harcourt Brace Jovanovich) pp. 67-68 [32] Goodenough J 1963 Magnetism and the chemical bond (Chichester: John Wiley and Sons) pp. 168-184 [33] Coey J M, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173 [34] Deng H X, Li J, Li S S, Xia J B, Walsh A and Wei S H 2010 Appl. Phys. Lett. 96 162508 [35] Walsh A, Silva J L F D and Wei S H 2008 Phys. Rev. Lett. 100 256401 [36] Albaridy R, Manchon A and Schwingenschlögl U 2020 J. Phys.: Condens. Matter 32 355702 [37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Blöchl P E 1994 Phys. Rev. B 50 17953 [41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [43] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767 [44] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [45] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 16 4990 [46] Kan M, Zhou J, Sun Q, Kawazoe Y and Jena P 2013 J. Phys. Chem. Lett. 4 3382 [47] Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 1991 Appl. Surf. Sci. 480 300 [48] Davidson I, Greedan J E, von Sacken U, Michal C A and Dahn J R 1991 Solid State Ionics 46 243 [49] Davidson I J, Greedan J E, Sacken U V, Michal C A and McKinnon W R 1993 J. Solid State Chem. 105 410 [50] Grimme S 2006 J. Computat. Chem. 27 1787 [51] Lehnert A, Dennler S, Bloński P B, Rusponi S, Etzkorn M, Moulas G, Bencok P, Gambardella P, Brune H and Hafner J 2010 Phys. Rev. B 82 094409 [52] Li X and Yang J 2013 Phys. Chem. Chem. Phys. 15 15793 [53] Li X, Li X and Yang J 2020 J. Phys. Chem. Lett. 11 4193 [54] Hu X, Zhao Y, Shen X, Krasheninnikov A V, Chen Z and Sun L 2020 ACS Appl. Mater. Interfaces 12 26367 [55] Zhang X, Wang B, Guo Y, Zhang Y, Chen Y and Wang J 2019 Nanoscale Horiz. 4 859 [56] Xu X, Ma Y, Zhang T, Lei C, Huang B and Dai Y 2020 Nanoscale Horiz. 5 1386 [57] Liu N, Zhou S and Zhao J 2020 Phys. Rev. Mater. 4 094003 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|