CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film |
Xue-Fu Zhang(张学富)1,2,4, Zhong-Hao Liu(刘中灏)1,4, Wan-Ling Liu(刘万领)3, Xiang-Le Lu(卢祥乐)1, Zhuo-Jun Li(李卓君)1,4, Qing-Kai Yu(于庆凯)1,4, Da-Wei Shen(沈大伟)1,4, Xiao-Ming Xie(谢晓明)1,2,3,4 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China;
4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China |
|
|
Abstract Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices. For epitaxially grown graphene, the process conditions and the microstructures are strongly dependent on various substrate materials with different lattice constants and interface energies. Utilizing angle-resolved photoemission spectroscopy, here we report an investigation of the electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film by chemical vapor deposition. With a relatively low growth temperature, graphene on Cu/Ni (111) exhibits a Dirac cone-like dispersion comparable to that of graphene grown on Cu (111). The linear dispersions forming Dirac cone are as wide as 2 eV, with the Fermi velocity of approximately 1.1×106 m/s. Dirac cone opens a gap of approximately 152 meV at the binding energy of approximately 304 meV. Our findings would promote the study of engineering of graphene on different substrate materials.
|
Received: 15 April 2019
Revised: 14 May 2019
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
68.65.Pq
|
(Graphene films)
|
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772317, 11604356, and 11704394). |
Corresponding Authors:
Zhong-Hao Liu, Da-Wei Shen
E-mail: lzh17@mail.sim.ac.cn;dwshen@mail.sim.ac.cn
|
Cite this article:
Xue-Fu Zhang(张学富), Zhong-Hao Liu(刘中灏), Wan-Ling Liu(刘万领), Xiang-Le Lu(卢祥乐), Zhuo-Jun Li(李卓君), Qing-Kai Yu(于庆凯), Da-Wei Shen(沈大伟), Xiao-Ming Xie(谢晓明) Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film 2019 Chin. Phys. B 28 086103
|
[1] |
Novoselov K S, Geim A K Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[3] |
Bae S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R and Song Y I 2010 Nat. Nanotech. 5 574
|
[4] |
Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A and Haensch W 2011 Nano Lett. 11 3690
|
[5] |
Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N J, Nuckolls C, Kim P and Shepard K L 2011 Nano Lett. 11 1093
|
[6] |
Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y and Duan X 2010 Nano Lett. 10 3952
|
[7] |
Wu Y, Lin Y C, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
|
[8] |
Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
|
[9] |
Meric I, Dean C R, Han S J, Wang L, Jenkins K A, Hone J and Shepard K 2010 Science 327 662
|
[10] |
Xu X Z, Zhang Z H, Dong J C, et al. 2017 Chin. Sci. Bull. 62 1074
|
[11] |
Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D J, Lim Y J, Yuan Q, Ding F, Jeong H Y and Shin H S 2015 Adv. Mat. 27 1376
|
[12] |
Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y and Dang W 2017 ACS Nano 11 12337
|
[13] |
Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M and Ikeda K I 2010 ACS Nano 4 7407
|
[14] |
Kim Y, Moyen E, Yi H, Avila J, Chen C, Asensio M C, Lee Y H and Pribat D 2018 2D Materials 5 035008
|
[15] |
Chen C, Avila J, Arezki H, Shen J, Mucha-Kruczyński M, Yao F, Boutchich M, Chen Y, Lee Y H and Asensio M C 2018 Nat. Mater. 17 450
|
[16] |
Varykhalov A, Scholz M, Kim T K and Rader O 2010 Phys. Rev. B 82 121101
|
[17] |
Wofford J M, Nie S, McCarty K F, Bartelt N C and Dubon O D 2010 Nano Lett. 10 4890
|
[18] |
Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Van Den Brink J 2007 Phys. Rev. B 76 073103
|
[19] |
Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K and Rotenberg E 2007 Solid State Commun. 143 63
|
[20] |
Jacob W and Dose V 1986 Appl. Phys. A 41 145
|
[21] |
Bendounan A, Forster F, Ziroff J, Schmitt F and Reinert F 2005 Phys. Rev. B 72 075407
|
[22] |
Shikin A, Prudnikova G, Adamchuk V, Moresco F and Rieder K H 2000 Phys. Rev. B 62 13202
|
[23] |
Yamamoto K, Fukushima M, Osaka T and Oshima C 1992 Phys. Rev. B 45 11358
|
[24] |
Dedkov Y S, Shikin A, Adamchuk V, Molodtsov S, Laubschat C and Bauer A Kaindl G 2001 Phys. Rev. B 64 035405
|
[25] |
Starodubov A, Medvetskii M, Shikin A and Adamchuk V 2004 Phys. Solid State 46 1340
|
[26] |
Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F and Rotenberg E 2011 Phys. Rev. B 84 195443
|
[27] |
Kralj M, Pletikosić I, Petrović M, Pervan P, Milun M, Busse C, Michely T, Fujii J and Vobornik I 2011 Phys. Rev. B 84 075427
|
[28] |
Knox K R, Wang S, Morgante A, Cvetko D, Locatelli A, Mentes T O, Niño M A, Kim P and Osgood Jr R 2008 Phys. Rev. B 78 201408
|
[29] |
Park S H and Kwon S 2016 Sci. Data 3 160031
|
[30] |
Avila J, Razado I, Lorcy S, Fleurier R, Pichonat E, Vignaud D, Wallart X and Asensio M C 2013 Surf. Sci. 3 2439
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|