Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086103    DOI: 10.1088/1674-1056/28/8/086103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film

Xue-Fu Zhang(张学富)1,2,4, Zhong-Hao Liu(刘中灏)1,4, Wan-Ling Liu(刘万领)3, Xiang-Le Lu(卢祥乐)1, Zhuo-Jun Li(李卓君)1,4, Qing-Kai Yu(于庆凯)1,4, Da-Wei Shen(沈大伟)1,4, Xiao-Ming Xie(谢晓明)1,2,3,4
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China;
4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China
Abstract  

Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices. For epitaxially grown graphene, the process conditions and the microstructures are strongly dependent on various substrate materials with different lattice constants and interface energies. Utilizing angle-resolved photoemission spectroscopy, here we report an investigation of the electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film by chemical vapor deposition. With a relatively low growth temperature, graphene on Cu/Ni (111) exhibits a Dirac cone-like dispersion comparable to that of graphene grown on Cu (111). The linear dispersions forming Dirac cone are as wide as 2 eV, with the Fermi velocity of approximately 1.1×106 m/s. Dirac cone opens a gap of approximately 152 meV at the binding energy of approximately 304 meV. Our findings would promote the study of engineering of graphene on different substrate materials.

Keywords:  single-crystal graphene      electronic structure      Cu/Ni (111)  
Received:  15 April 2019      Revised:  14 May 2019      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  68.65.Pq (Graphene films)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  81.05.ue (Graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51772317, 11604356, and 11704394).

Corresponding Authors:  Zhong-Hao Liu, Da-Wei Shen     E-mail:  lzh17@mail.sim.ac.cn;dwshen@mail.sim.ac.cn

Cite this article: 

Xue-Fu Zhang(张学富), Zhong-Hao Liu(刘中灏), Wan-Ling Liu(刘万领), Xiang-Le Lu(卢祥乐), Zhuo-Jun Li(李卓君), Qing-Kai Yu(于庆凯), Da-Wei Shen(沈大伟), Xiao-Ming Xie(谢晓明) Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film 2019 Chin. Phys. B 28 086103

[1] Novoselov K S, Geim A K Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Bae S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R and Song Y I 2010 Nat. Nanotech. 5 574
[4] Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A and Haensch W 2011 Nano Lett. 11 3690
[5] Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N J, Nuckolls C, Kim P and Shepard K L 2011 Nano Lett. 11 1093
[6] Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y and Duan X 2010 Nano Lett. 10 3952
[7] Wu Y, Lin Y C, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
[8] Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y and Duan X 2010 Nature 467 305
[9] Meric I, Dean C R, Han S J, Wang L, Jenkins K A, Hone J and Shepard K 2010 Science 327 662
[10] Xu X Z, Zhang Z H, Dong J C, et al. 2017 Chin. Sci. Bull. 62 1074
[11] Nguyen V L, Shin B G, Duong D L, Kim S T, Perello D J, Lim Y J, Yuan Q, Ding F, Jeong H Y and Shin H S 2015 Adv. Mat. 27 1376
[12] Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y and Dang W 2017 ACS Nano 11 12337
[13] Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M and Ikeda K I 2010 ACS Nano 4 7407
[14] Kim Y, Moyen E, Yi H, Avila J, Chen C, Asensio M C, Lee Y H and Pribat D 2018 2D Materials 5 035008
[15] Chen C, Avila J, Arezki H, Shen J, Mucha-Kruczyński M, Yao F, Boutchich M, Chen Y, Lee Y H and Asensio M C 2018 Nat. Mater. 17 450
[16] Varykhalov A, Scholz M, Kim T K and Rader O 2010 Phys. Rev. B 82 121101
[17] Wofford J M, Nie S, McCarty K F, Bartelt N C and Dubon O D 2010 Nano Lett. 10 4890
[18] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Van Den Brink J 2007 Phys. Rev. B 76 073103
[19] Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K and Rotenberg E 2007 Solid State Commun. 143 63
[20] Jacob W and Dose V 1986 Appl. Phys. A 41 145
[21] Bendounan A, Forster F, Ziroff J, Schmitt F and Reinert F 2005 Phys. Rev. B 72 075407
[22] Shikin A, Prudnikova G, Adamchuk V, Moresco F and Rieder K H 2000 Phys. Rev. B 62 13202
[23] Yamamoto K, Fukushima M, Osaka T and Oshima C 1992 Phys. Rev. B 45 11358
[24] Dedkov Y S, Shikin A, Adamchuk V, Molodtsov S, Laubschat C and Bauer A Kaindl G 2001 Phys. Rev. B 64 035405
[25] Starodubov A, Medvetskii M, Shikin A and Adamchuk V 2004 Phys. Solid State 46 1340
[26] Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F and Rotenberg E 2011 Phys. Rev. B 84 195443
[27] Kralj M, Pletikosić I, Petrović M, Pervan P, Milun M, Busse C, Michely T, Fujii J and Vobornik I 2011 Phys. Rev. B 84 075427
[28] Knox K R, Wang S, Morgante A, Cvetko D, Locatelli A, Mentes T O, Niño M A, Kim P and Osgood Jr R 2008 Phys. Rev. B 78 201408
[29] Park S H and Kwon S 2016 Sci. Data 3 160031
[30] Avila J, Razado I, Lorcy S, Fleurier R, Pichonat E, Vignaud D, Wallart X and Asensio M C 2013 Surf. Sci. 3 2439
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!