Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037104    DOI: 10.1088/1674-1056/ac4036
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev   Next  

High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics

Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军)
State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
Abstract  Two-dimensional (2D) layered perovskites have emerged as potential alternates to traditional three-dimensional (3D) analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion—Jacobson (DJ) perovskites. In this work, a serious of cycloalkane (CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional (DFT) calculations. We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9—2.1 eV. These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.
Keywords:  first-principle calculations      two-dimensional halide perovskites      electronic structures      Dion—Jacobson phaseperovskites      optoelectronic applications  
Received:  29 November 2021      Revised:  06 December 2021      Accepted manuscript online:  06 December 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections) (First-principles theory)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62004080), the Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143), and the China Postdoctoral Science Foundation (Grant No. 2020M670834). Calculations were performed in part at the high-performance computing center of Jilin University.
Corresponding Authors:  Xin He     E-mail:

Cite this article: 

Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军) High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics 2022 Chin. Phys. B 31 037104

[1] Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q, Sargent E H and Ning Z 2017 J. Am. Chem. Soc. 139 6693
[2] Li T, Zhao X, Yang D, Du M H and Zhang L 2018 Phys. Rev. Appl. 15 019901
[3] Yang D, Ming W, Shi H, Zhang L and Du M H 2016 Chem. Mater. 28 4349
[4] Kumbhakar P, Chowde Gowda C and Tiwary C S 2021 Front. Mater. 8 721514
[5] Best Research-Cell Efficiency Chart
[6] Weber D 1978 Zeitschrift für Naturforschung B 33 1443
[7] Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D and Karunadasa H I 2014 Angew Chem. Int. Edit. 53 11232
[8] Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y and Huang W 2020 Nat. Photon. 14 154
[9] Zhang M, Zhao L, Xie J, Zhang Q, Wang X, Yaqoob N, Yin Z, Kaghazchi P, Zhang S, Li H, Zhang C, Wang L, Zhang L, Xu W and Xing J 2021 Nat. Commun. 12 4890
[10] Li X, Ke W, Traoré B, Guo P, Hadar I, Kepenekian M, Even J, Katan C, Stoumpos C C, Schaller R D and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 12880
[11] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775
[12] Mao L, Stoumpos C C and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171
[13] Shi R, Zhang Z, Fang W H and Long R 2020 J. Mater. Chem. A 8 9168
[14] Na G, Li Y, Xing B, Zhang Y, He X, Saidi W A and Zhang L 2021 APL Materials 9 111105
[15] Ummadisingu A, Mishra A, Kubicki D J, LaGrange T, Dučinskas A, Siczek M, Bury W, Milić J V, Grätzel M and Emsley L 2021 Small 18 2104287
[16] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh D J, Zhang L and Miao F 2018 Nano Lett. 18 7538
[17] Mao L, Kennard R M, Traore B, Ke W, Katan C, Even J, Chabinyc M L, Stoumpos C C and Kanatzidis M G 2019 Chem 5 2593
[18] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775
[19] Vasileiadou E S, Wang B, Spanopoulos I, Hadar I, Navrotsky A and Kanatzidis M G 2021 J. Am. Chem. Soc. 143 2523
[20] Zheng Y, Niu T, Qiu J, Chao L, Li B, Yang Y, Li Q, Lin C, Gao X, Zhang C, Xia Y, Chen Y and Huang W 2019 Solar RRL 3 1900090
[21] Wang H, Qin Z, Xie J, Zhao S, Liu K, Guo X, Li G, Lu X, Yan K and Xu J 2020 Small 16 2003098
[22] Yang L, Chen Y, Wang X, Deng J, Wang W, Ding X, Yang W and Yao J 2021 J. Phys. Chem. C 125 24096
[23] Li C, Ma Y, Xiao Y, Shen L and Ding L 2020 Info. Mat. 2 1247
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Li R, Cheng Y and Huang W 2018 Small 14 1802091
[26] Wieghold S, Bieber A S, VanOrman Z A and Nienhaus L 2019 J. Phys. Chem. Lett. 10 3806
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Klimeš J, Bowler D R and Michaelides A 2009 J. Phys.:Condens. Matter 22 022201
[29] Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y and Zhang L 2021 Sci. Bull. 66 1973
[30] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[1] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[2] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[3] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[4] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[8] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[9] Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates
Wei-Qi Yu(余维琪), Hong-Jun Xiao(肖红君), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 103101.
[10] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[11] First principles study of stability, mechanical, and electronic properties of chromium silicides
Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶). Chin. Phys. B, 2018, 27(10): 107102.
[12] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[13] Stability, electronic structures, and mechanical properties of Fe-Mn-Al system from first-principles calculations
Ya-Hui Liu(刘亚会), Xiao-Yu Chong(种晓宇), Ye-Hua Jiang(蒋业华), Jing Feng(冯晶). Chin. Phys. B, 2017, 26(3): 037102.
[14] CN bond orientation in metal carbonitride endofullerenes:A density functional theory study
Zhu-Xia Zhang(张竹霞), Yong Zhang(张勇), Wen-Hua Xue(薛文华), Wei Jia(贾伟), Cai-Li Zhang(张彩丽), Chun-Xia Li(李春霞), Peng Cui(崔鹏). Chin. Phys. B, 2017, 26(12): 123102.
[15] Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure
Tai Wang(王泰), Yong-Quan Guo(郭永权), Shuai Li(李帅). Chin. Phys. B, 2017, 26(10): 103101.
No Suggested Reading articles found!