Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 026102    DOI: 10.1088/1674-1056/ac0a69

First-principles study of two new boron nitride structures: C12-BN and O16-BN

Hao Wang(王皓)1,†, Yaru Yin(殷亚茹)2, Xiong Yang(杨雄)1, Yanrui Guo(郭艳蕊)1, Ying Zhang(张颖)1, Huiyu Yan(严慧羽)1, Ying Wang(王莹)1, and Ping Huai(怀平)2,3,4
1 College of Science, Civil Aviation University of China, Tianjin 300300, China;
2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China;
3 Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Abstract  Based on the first-principles method, we predict two new stable BN allotropes:C12-BN and O16-BN, which belong to cubic and orthorhombic crystal systems, respectively. It is confirmed that both the phases are thermally and dynamically stable. The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K. In the case of mechanical properties, C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa, making it a novel superhard material with potential technological and industrial applications. Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 eV and 3.54 eV, respectively. The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation. Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.
Keywords:  new boron nitride phase      first-principles calculations      mechanical properties      electric properties  
Received:  29 March 2021      Revised:  09 June 2021      Accepted manuscript online:  11 June 2021
PACS:  61.50.-f (Structure of bulk crystals)  
  62.20.-x (Mechanical properties of solids) (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by PhD research startup foundation of Civil Aviation University of China (Grant No. 2020KYQD94).
Corresponding Authors:  Hao Wang     E-mail:

Cite this article: 

Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平) First-principles study of two new boron nitride structures: C12-BN and O16-BN 2022 Chin. Phys. B 31 026102

[1] Golberg D, Bando Y, Stéphan O and Kurashima K 1998 Appl. Phys. Lett. 73 2441
[2] Yin D Q, Yang Y, Yang Y and Fang H 2016 Carbon 102 273
[3] Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G and Zettl A 1995 Science 269 966
[4] Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M and Zettl A K 2011 Nano Lett. 11 3221
[5] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[6] Hamilton E J M, Dolan S E, Mann C M, Colijn H O, McDonald C A and Shore S G 1993 Science 260 659
[7] Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144
[8] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[9] Kern G, Kresse G and Hafner J 1999 Phys. Rev. B 59 8551
[10] Wen B, Zhao J J, Melnik R and Tian Y J 2011 Phys. Chem. Chem. Phys. 13 14565
[11] He C Y, Sun L Z, Zhang C X, Peng X G, Zhang K W and Zhong J X 2012 Phys. Chem. Chem. Phys. 14 10967
[12] Jiang X, Zhao J J and Ahuja R 2013 J. Phys.:Condens. Matter. 25 122204
[13] Ren X Y, Zhao C X, Niu C Y, Wang J Q, Jia Y and Cho J H 2016 Phys. Lett. A 380 3891
[14] Zhang Z G, Lu M C, Zhu L, Zhu L L, Li Y D, Zhang M and Li Q 2014 Phys. Lett. A 378 741
[15] Zhang S H, Wang Q, Kawazoe Y and Jena P 2013 J. Am. Chem. Soc. 135 18216
[16] Wang H, Zhang W and Huai P 2017 J. Phys. D:Appl. Phys. 50 385302
[17] Umemoto K, Wentzcovitch R M, Saito S and Miyake T 2010 Phys. Rev. Lett. 104 125504
[18] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhès S, Willand A, Caliste D, Botti S, Miguel A San, Goedecker S and Marques M A 2012 Phys. Rev. Lett. 108 065501
[19] Li Q, Ma Y M, Oganov A R, Wang H B, Wang H, Xu Y, Cui T, Mao H K and Zou G T 2009 Phys. Rev. Lett. 102 175506
[20] Niu H Y, Chen X Q, Wang S B, Li D Z, Mao W L and Li Y Y 2012 Phys. Rev. Lett. 108 135501
[21] Zhao C X, Niu C Y, Qin Z J, Ren X Y, Wang J T, Cho J H and Jia Y 2016 Sci. Rep. 6 21879
[22] Wang J T, Chen C F, Wang E and Kawazoe Y 2014 Sci. Rep. 4 04339
[23] Zhang M, Liu H Y, Du Y H, Zhang X X, Wang Y C and Li Q 2013 Phys. Chem. Chem. Phys. 15 14120
[24] Zhang S H, Wang Q, Chen X S and Jena P 2013 Proc. Natl. Acad. Sci. USA 110 18809
[25] Gao Y, Chen Y P, Zhong C Y, Zhang Z W, Xie Y E and Zhang S B 2016 Nanoscale 8 12863
[26] Liu H, Fan Q Y, Yang F, Yu X H, Zhang W and Yun S N 2020 Chin. Phys. B 29 106102
[27] Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103
[28] Ma Z Y, Wang P, Yan F, Shi C L and Tian Y 2019 Chin. Phys. B 28 036101
[29] Xiong M, Luo K, Pan Y L, Liu L Y, Gao G Y, Yu D L, He J L, Xu B and Zhao Z S 2017 J. Alloys Compd. 731 364
[30] Li Z Z, Lian C S, Xu J, Xu L F, Wang J T and Chen C F 2015 Phys. Rev. B 91 214106
[31] Wang J T, Weng H M, Nie S M, Fang Z, Kawazoe Y and Chen C F 2016 Phys. Rev. Lett. 116 195501
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[36] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[37] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[38] Niu C Y and Wang J T 2014 Phys. Lett. A 378 2303
[39] Lee S H and Jhi S H 2015 J. Phys.:Condens. Matter. 27 075301
[40] Bosak A, Serrano J, Krisch M, Watanabe K, Taniguchi T and Kanda H 2006 Phys. Rev. B 73 041402
[41] Zhao Z S, Xu B, Zhou X F, Wang L M, Wen B, He J L, Liu Z Y, Wang H T and Tian Y J 2011 Phys. Rev. Lett. 107 215502
[42] Chatterjee S, Kim M J, Zakharov D N, Kim S M, Stach E A, Maruyama B and Sneddon L G 2012 Chem. Mater. 24 2872
[43] Ayme J F, Beves J E, Campbell C J and Leigh D A 2013 Chem. Soc. Rev. 42 1700
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[12] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!