Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037301    DOI: 10.1088/1674-1056/ac16c8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures

Xiuya Su(苏秀崖)1, Helin Qin(秦河林)1,2, Zhongbo Yan(严忠波)1, Dingyong Zhong(钟定永)1,2,†, and Donghui Guo(郭东辉)1,‡
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Abstract  Recently, two-dimensional van der Waals (vdW) magnetic heterostructures have attracted intensive attention since they can show remarkable properties due to the magnetic proximity effect. In this work, the spin-polarized electronic structures of antimonene/Fe3GeTe2 vdW heterostructures were investigated through the first-principles calculations. Owing to the magnetic proximity effect, the spin splitting appears at the conduction-band minimum (CBM) and the valence-band maximum (VBM) of the antimonene. A low-energy effective Hamiltonian was proposed to depict the spin splitting. It was found that the spin splitting can be modulated by means of applying an external electric field, changing interlayer distance or changing stacking configuration. The spin splitting energy at the CBM monotonously increases as the external electric field changes from -5 V/nm to 5 V/nm, while the spin splitting energy at the VBM almost remains the same. Meanwhile, as the interlayer distance increases, the spin splitting energies at the CBM and VBM both decrease. The different stacking configurations can also induce different spin splitting energies at the CBM and VBM. Our work demonstrates that the spin splitting of antimonene in this heterostructure is not singly dependent on the nearest Sb—Fe distance, which indicates that magnetic proximity effect in heterostructures may be modulated by multiple factors, such as hybridization of electronic states and the local electronic environment. The results enrich the fundamental understanding of the magnetic proximity effect in two-dimensional vdW heterostructures.
Keywords:  first-principles calculations      antimonene/Fe3GeTe2 vdW heterostructures      magnetic proximity effect      spin splitting  
Received:  25 June 2021      Revised:  19 July 2021      Accepted manuscript online:  22 July 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774434, 11974431, and 11832019). The computation part of the work was supported by National Supercomputer Center in Guangzhou.
Corresponding Authors:  Dingyong Zhong, Donghui Guo     E-mail:  dyzhong@mail.sysu.edu.cn;guodonghui@mail.sysu.edu.cn

Cite this article: 

Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉) Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures 2022 Chin. Phys. B 31 037301

[1] Zollner K, Faria J P E and Fabian J 2019 Phys. Rev. B 100 085128
[2] Xian J J, Chen L, Liu X, Zhang W H, Peng L, Li R, Cai M, Qiao J and Fu Y S 2020 Phys. Rev. Res. 2 033360
[3] Bergeret F S, Volkov A F and Efetov K B 2001 Phys. Rev. Lett. 86 4096
[4] Tang C L, Zhang Z W, Lai S, Tan Q H and Gao W B 2020 Adv. Mater. 32 1908498
[5] Stahn J, Chakhalian J, Niedermayer C, Hoppler J, Gutberlet T, Voigt J, Treubel F, Habermeier H U, Cristiani G, Keimer B and Bernhard C 2005 Phys. Rev. B 71 140509
[6] Liu Y, Niu X, Zhang R, Zhang Q, Teng J and Li Y 2021 Chin. Phys. Lett. 38 057303
[7] Nadj Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[8] Dayen J F, Ray S J, Karis O, Vera-Marun I J and Kamalakar M V 2020 Appl. Phys. Rev. 7 011303
[9] Frisenda R, Navarro Moratalla E, Gant P, Perez De Lara D, Jarillo Herrero P, Gorbachev R V and Castellanos Gomez A 2018 Chem. Soc. Rev. 47 53
[10] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441
[11] Behera S K, Bora M, Paul Chowdhury S S and Deb P 2019 Phys. Chem. Chem. Phys. 21 25788
[12] Zhu Y, Wang X and Mi W 2019 J. Mater. Chem. C 7 2049
[13] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[14] Zhang Y, Guo H H, Dong B J, Zhu Z, Yang T, Wang J Z and Zhang Z D 2020 Chin. Phys. B 29 037305
[15] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112
[16] Shi Z Q, Li H, Yuan Q Q, Xue C L, Xu Y J, Lv Y Y, Jia Z Y, Chen Y, Zhu W and Li S C 2020 ACS Nano 14 16755
[17] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352
[18] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K and Gao H J 2017 Adv. Mater. 29 1605407
[19] Wang X, Tang C, Zhou X, Zhu W and Cheng C 2019 Appl. Surf. Sci. 491 451
[20] Wu P, Li P and Huang M 2019 Nanomaterials 9 1430
[21] Nie K, Wang X and Mi W 2019 Phys. Chem. Chem. Phys. 21 6984
[22] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nat. Commun. 8 1958
[23] Gong C and Zhang X 2019 Science 363 eaav4450
[24] Wang Y P, Chen X Y and Long M Q 2020 Appl. Phys. Lett. 116 092404
[25] Zheng G, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J, Xiong Y, Tian M, Zhao Y J and Wang L 2020 Phys. Rev. Lett. 125 047202
[26] Hu X, Zhao Y, Shen X, Krasheninnikov A V, Chen Z and Sun L 2020 ACS Appl. Mater. Inter. 12 26367
[27] Guo Y, Zhou S and Zhao J 2021 J. Mater. Chem. C 9 6103
[28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[30] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Blochl P E 1994 Phys. Rev. B 50 17953
[33] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[34] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[35] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[36] Gao Y, Wang X and Mi W 2021 Comput. Mater. Sci. 187 110085
[37] He X and Li J B 2019 Chin. Phys. B 28 037301
[38] Wu Q, Ang Y S, Cao L and Ang L K 2019 Appl. Phys. Lett. 115 083105
[39] Moynihan G, Sanvito S and O'Regan D D 2017 2D Mater. 4 045018
[40] Farmanbar M and Brocks G 2016 Phys. Rev. B 93 085304
[41] Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627
[42] Chang J 2018 Nanoscale 10 13652
[43] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
[44] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[45] Song Y, Li D, Mi W B, Wang X C and Cheng Y C 2016 J. Phys. Chem. C 120 5613
[46] Rostami H, Moghaddam A G and Asgari R 2013 Phys. Rev. B 88 085440
[47] Cummings A W, Garcia J H, Fabian J and Roche S 2017 Phys. Rev. Lett. 119 206601
[48] Vu T V, Hieu N V, Phuc H V, Hieu N N, Bui H D, Idrees M, Amin B and Nguyen C V 2020 Appl. Surf. Sci. 507 145036
[49] Mohanta M K and De Sarkar A 2021 Appl. Surf. Sci. 540 148389
[50] Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y and Ji W 2019 Phys. Rev. B 99 144401
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!