Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076401    DOI: 10.1088/1674-1056/28/7/076401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Semiconductor-metal transition in GaAs nanowires under high pressure

Yi-Lan Liang(梁艺蓝)1, Zhen Yao(姚震)1, Xue-Tong Yin(殷雪彤)1, Peng Wang(王鹏)1, Li-Xia Li(李利霞)2, Dong Pan(潘东)2, Hai-Yan Li(李海燕)1, Quan-Jun Li(李全军)1, Bing-Bing Liu(刘冰冰)1, Jian-Hua Zhao(赵建华)2
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

We investigate the structural phase transitions and electronic properties of GaAs nanowires under high pressure by using synchrotron x-ray diffraction and infrared reflectance spectroscopy methods up to 26.2 GPa at room temperature. The zinc-blende to orthorhombic phase transition was observed at around 20.0 GPa. In the same pressure range, pressure-induced metallization of GaAs nanowires was confirmed by infrared reflectance spectra. The metallization originates from the zinc-blende to orthorhombic phase transition. Decompression results demonstrated that the phase transition from zinc-blende to orthorhombic and the pressure-induced metallization are reversible. Compared to bulk materials, GaAs nanowires show larger bulk modulus and enhanced transition pressure due to the size effects and high surface energy.

Keywords:  GaAs nanowires      high pressure      structural transition      x-ray diffraction  
Received:  18 February 2019      Revised:  06 April 2019      Published:  05 July 2019
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  91.60.Gf (High-pressure behavior)  
  63.22.Gh (Nanotubes and nanowires)  
  61.05.cp (X-ray diffraction)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant No. 11604116), Beijing Municipal Natural Science Foundation, China (Grant No. 1192017), and Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017156).

Corresponding Authors:  Peng Wang, Dong Pan     E-mail:  wangpengtrrs@jlu.edu.cn;pandong@semi.ac.cn

Cite this article: 

Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华) Semiconductor-metal transition in GaAs nanowires under high pressure 2019 Chin. Phys. B 28 076401

[1] Bar-Chaim N, Margalit S, Yariv A and Ury I 1982 IEEE Trans. Electron. Devices 29 1372
[2] Yoon J, Jo S, Chun I S, Jung I, Kim H S, Meitl M, Menard E, Li X, Coleman J J, Paik U and Rogers J A 2010 Nature 465 329
[3] Lee K, Lee J, Mazor B A and Forrest S R 2015 Light: Sci. & Appl. 4 e288
[4] Persson A I, Larsson M W, Stenström S, Ohlsson B J, Samuelson L and Wallenberg L R 2004 Nat. Mater. 3 677
[5] Colombo C, Spirkoska D, Frimmer M, Abstreiter G and Fontcuberta i Morral A 2008 Phys. Rev. B 77 155326
[6] Hoang T B, Moses A F, Zhou H L, Dheeraj D L, Fiml, B O and Weman H 2009 Appl. Phys. Lett. 94 133105
[7] Czaban J A, Thompson D A and LaPierre R R 2009 Nano Lett. 9 148
[8] Breuer S, Pfüller C, Flissikowski T, Brandt O, Grahn H T, Geelhaar L and Riechert H 2011 Nano Lett. 11 1276
[9] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
[10] Wang Z and Nabet B 2015 Nanophotonics 4 491
[11] Burgess T, Saxena D, Mokkapati S, Li Z, Hall C R, Davis J A, Wang Y, Smith L M, Fu L, Caroff P, Tan H H and Jagadish C 2016 Nat. Commun. 7 11927
[12] Wang Y B, Wang L F, Joyce H J, Gao Q, Liao X Z, Mai Y W, Tan H H, Zou J, Ringer S P, Gao H J and Jagadish C 2011 Adv. Mater. 23 1356
[13] Paulitschke P, Seltner N, Lebedev A, Lorenz H and Weig E M 2013 Appl. Phys. Lett. 103 261901
[14] Mante P A, Lehmann S, Anttu N, Dick K A and Yartsev A 2016 Nano Lett. 16 4792
[15] Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
[16] Shtrikman H, Popovitz-Biro R, Kretinin A V and Kacman P 2011 IEEE J. Sel. Top. Quantum Electron. 17 922
[17] Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763
[18] San-Miguel A 2006 Chem. Soc. Rev. 35 876
[19] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[20] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[21] Besson J M, Itié J P, Polian A, Weill G, Mansot J L and Gonzalez J 1991 Phys. Rev. B 44 4214
[22] Samuel T W, Yogesh K V, Craig A V and Arthur L R 1989 Phys. Rev. B 39 1280
[23] Gupta D C and Kulshrestha S 2008 J. Phys.: Condens. Matter 20 255204
[24] Wang J, Wu B J, Zhang G Z, Tian L H, Gu G R and Gao C X 2016 RSC Adv. 6 10144
[25] Zardo I, Yazji S, Marini C, Uccelli E, Fontcuberta i Morral A, Abstreiter G and Postorino P 2012 ACS Nano 6 3284
[26] Zhou W, Chen X J, Zhang J B, Li X H, Wang Y Q and Goncharov A F 2015 Sci. Rep. 4 6472
[27] Li L X, Pan D, Xue Y Z, Wang X L, Lin M L, Su D, Zhang Q L, Yu X Z, So H, Wei D H, Sun B, Tan P H, Pan A L and Zhao J H 2017 Nano Lett. 17 622
[28] Bao P, Wang Y B, Cui X Y, Gao Q, Yen H W, Liu H W, Kong Yeoh W, Liao X Z, Du S, Hoe Tan H, Jagadish C, Zou J, Ringer S P and Zheng R K 2014 Appl. Phys. Lett. 104 021904
[29] Zhang H F, Guan Z, Cheng B Y, Li Q J, Liu R, Zhang J, Liu Z X, Yang K, Cui T and Liu B B 2017 RSC Adv. 7 31597
[30] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
[31] He Y, Liu J F, Chen W, Wang Y, Wang H, Zeng Y W, Zhang G Q, Wang L N, Liu J, Hu T D, Hahn H, Gleiter H and Jiang J Z 2005 Phys. Rev. B 72 212102
[32] Wang L H, Liu H Z, Qian J, Yang W G and Zhao Y S 2012 J. Phys. Chem. C 116 2074
[33] Li Q J, Zhang H F, Lin C L, Tian F B, Smith J S, Park C, Liu B B and Shen G Y 2017 J. Alloys Compd. 709 260
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[3] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[7] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[8] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[12] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[15] A new technology for controlling in-situ oxygen fugacity in diamond anvil cells and measuring electrical conductivity of anhydrous olivine at high pressures and temperatures
Wen-Shu Shen(沈文舒), Lei Wu(吴雷), Tian-Ji Ou(欧天吉), Dong-Hui Yue(岳冬辉), Ting-Ting Ji(冀婷婷), Yong-Hao Han(韩永昊), Wen-Liang Xu(许文良), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2020, 29(1): 010702.
No Suggested Reading articles found!