Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037501    DOI: 10.1088/1674-1056/24/3/037501
RAPID COMMUNICATION Prev   Next  

Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal

Ke Ya-Jiao, Zhang Xiang-Qun, Ge Heng, Ma Yue, Cheng Zhao-Hua
State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in DyFeO3 single crystal. A giant rotating field entropy change of -ΔSMR=16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 kOe. The large anisotropic magnetic entropy change is mainly accounted for the 4f electron of rare-earth Dy3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite DyFeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.

Keywords:  magnetocaloric effect      rotating field entropy change      magnetocrystalline anisotropy      DyFeO3 single crystal  
Received:  23 October 2014      Revised:  03 November 2014      Published:  05 March 2015
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Lx (Magnetic oxides)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934202, 2011CB921801, and 2012CB933102) and the National Natural Science Foundation of China (Grant Nos. 11174351, 11274360, and 11034004).

Corresponding Authors:  Cheng Zhao-Hua     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Ke Ya-Jiao, Zhang Xiang-Qun, Ge Heng, Ma Yue, Cheng Zhao-Hua Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal 2015 Chin. Phys. B 24 037501

[1] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Kapitza P 1934 Proc. R. Soc. Lond. A 147 189
[5] Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and NamiKi T 2012 Appl. Phys. Lett. 100 152403
[6] Li L, Hutchison W D, Huo D, Namiki T, Qian Z and Nishimura K 2012 Scripta Mater. 67 237
[7] Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
[8] Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Appl. Phys. Lett. 96 152501
[9] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[10] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
[11] Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G and Ivanova T I 2010 Phys. Rev. Lett. 105 137205
[12] Kuz'min M D and Tishin A M 1991 J. Phys. D: Appl. Phys. 24 2039
[13] Das P K, Bhattacharyya A, Kulkarni R, Dhar S K and Thamizhavel A 2014 Phys. Rev. B 89 134418
[14] Balli M, Jandl S, Fournier P and Gospodinov M M 2014 Appl. Phys. Lett. 104 232402
[15] Jin J L, Zhang X Q, Li G K, Cheng Z H, Zheng L and Lu Y 2011 Phys. Rev. B 83 184431
[16] Jin J L, Zhang X Q, Ge H and Cheng Z H 2012 Phys. Rev. B 85 214426
[17] Huang R, Cao S, Ren W, Zhan S, Kang B and Zhang J 2013 Appl. Phys. Lett. 103 162412
[18] Berton A 1968 J. Appl. Phys. 39 1367
[19] Prelorendjo L A, Johnson C E, Thomas M F and Wanklyn B M 1980 J. Phys. C: Solid State Phys. 13 2567
[20] Rajeswaran B, Sanyal D, Chakrabarti M, Sundarayya Y, Sundaresan A and Rao C N R 2013 Europhys. Lett. 101 17001
[21] White R L 1969 J. Appl. Phys. 40 1061
[22] Zhao Z Y, Zhao X, Zhou H D, Zhang F B, Li Q J, Fan C, Sun X F and Li X G 2014 Phys. Rev. B 89 224405
[23] Tokunaga Y, Iguchi S, Arima T and Tokura Y 2008 Phys. Rev. Lett. 101 097205
[24] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M and Rasing T 2005 Nature 435 655
[25] Tokunaga Y, Taguchi Y, Arima T H and Tokura Y 2012 Nat. Phys. 8 838
[26] Gorodetsky G, Sharon B and Shtrikman S 1968 J. Appl. Phys. 39 1371
[27] Gordon J D, Gorodetsky G and Hornreich R M 1976 J. Magn. Magn. Mater. 7 280
[28] Bidaux R, Bouree J E and Hammann J 1975 J. Phys. Chem. Solids 36 655
[29] Bouree J E and Hammann J 1975 J. Phys. 36 391
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[3] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[4] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[7] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[8] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[9] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[10] Influence of additives on the magnetic damping constant of CoIr soft magnetic thin films with negative magnetocrystalline anisotropy
Tianyong Ma(马天勇), Zhi Luo(罗智), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 057505.
[11] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[12] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[13] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[14] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[15] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
No Suggested Reading articles found!