Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016103    DOI: 10.1088/1674-1056/22/1/016103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure effect on inverse spinel LiCuVO4: X-ray diffraction and Raman scattering

Liang Heng-Nan, Ma Chun-Li, Du Fei, Cui Qi-Liang, Zou Guang-Tian
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B0=197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.
Keywords:  high pressure      inverse spinel LiCuVO4      X-ray diffraction      Raman scattering  
Received:  28 August 2012      Revised:  12 October 2012      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074089 and 11004073) and the National Basic Research Program of China (Grant No. 2011CB808200).
Corresponding Authors:  Cui Qi-Liang     E-mail:  cql@jlu.edu.cn

Cite this article: 

Liang Heng-Nan, Ma Chun-Li, Du Fei, Cui Qi-Liang, Zou Guang-Tian High-pressure effect on inverse spinel LiCuVO4: X-ray diffraction and Raman scattering 2013 Chin. Phys. B 22 016103

[1] Fey G T K and Huang D L 1999 Electrochimica. Acta 45 295
[2] Fontijn W F J, van der Zaag P J, Feiner L F, Metselaar R and Devillers M A C 1999 J. Appl. Phys. 85 5100
[3] Zerr AMiehe G, Serghiou G, Schwarz M, Kroke ERiedel R, Fuesz H, Kroll P and Boehler R 1999 Nature 400 340
[4] Martinez S E, Garcia H M, Guzman J, Ramos B F, Santoyo S J, Martinez M R, Alvarez F O, Ramos C M I, Mendez D J J and Falcony C 2005 Phys. Stat. Sol. A 202 102
[5] Liu Y, Zhou R, Li J, Zhang Y, Xiong R, Yin D, Tang W F and Shi J 2010 Acta Phys. Sin. 59 5620 (in Chinese)
[6] Lafontaine M A, Leblanc M and Ferey G 1989 Acta Crystallogr. C 45 1205
[7] Kanno R, Kawamoto Y, Takeda Y, Hasegawa M, Yamamoto O and Kinomura N 1992 J. Solid State Chem. 96 397
[8] Schrettle F, Krohns S, Lunkenheimer P, Hemberger J, Büttgen N, Krug von Nidda H A, Prokofiev A V and Loidl A 2008 Phys. Rev. B 77 144101
[9] Vasil'ev A, Ponomarenko L, Manaka H, Yamada I, Isobe M and Ueda Y 2001 Phys. Rev. B 64 024419
[10] Kazakopoulos A and Kalogirou O 2008 Solid State Ionics 179 936
[11] Moskvin A S and Drechsler S L 2008 Europhys Lett. 81 57004
[12] Yukio Y, Kenji S, Taketo M, Masatoshi S and Kazuhisa K 2008 J. Phys. Soc. Jpn. 77 023712
[13] Masatoshi S, Yukio Y, Yoshiaki K, Kenji S, Yutaka N, Yasuko T and Yuji K 2010 Solid State Sci. 12 670
[14] Wang Z W, Lazor P, Saxena S K and Artioli G 2002 J. Solid State Chem. 165 165
[15] Levy D, Pavese A, Sani A and Pischedda V 2001 Phys. Chem. Miner. 28 612
[16] Errandonea D, Kumar R Manjón F, Ursaki V and Rusu E 2009 Phys. Rev. B 79 024103
[17] Wang Z W, Downs R, Pischedda V, Shetty R, Saxena S, Zha C S, Zhao Y, Schiferl D and Waskowska A 2003 Phys. Rev. B 68 094101
[18] Du F, Wang C Z, Li X, Li A and Chen G 2008 Chem. J. Chin. Universities 29 1312
[19] Fey G T F and Huang D L 1999 Electrochimica Acta 45 295
[20] MaoH K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[21] Wang Z W, Chen O, Cao C Y, Finkelstein K, Smilgies D M, Lu X and Bassett W A 2010 Rev. Sci. Instrum. 81 093902
[22] Jin E J, Yao L D, Wang F F and Shen X 2009 Chin. J. H. P. Phys. 23 241 (in Chinese)
[23] Shirokov V B, Yuzyuk Y I, Torgashev V I and Prokhorov A S 2005 Phys. Solid State 47 539
[24] Preudhomme J and Tarte P 1972 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 28 69
[25] Chen J Y, Zheng H F, Zhang H, Weng K N and Zeng Y S 2005 Physics 3 221 (in Chinese)
[26] Birch F 1938 J. Appl. Phys 9 279
[27] Recio J M, Franco R, Martín P A, Blanco M, Pueyo L and Pandey R 2001 Phys. Rev. B 63 184101
[28] Larry W F, Robert M H and Anne M H 1986 Phys. Chem. Miner. 13 215
[29] Kruger M B, Nguyen J H, Cadwell W and Jeanloz R 1997 Phys. Rev. B 56 1
[30] Åsbrink S, Wa S A, Staun O J, Gerward L and Talik E 1999 Phys. Rev. B 60 12651
[31] Waskowska A, Gerward L, Olsen J S, Steenstrupand S and Talik E 2001 J. Phys. Condens. Matter 13 2549
[1] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[2] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[3] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[4] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[5] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[6] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[7] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[8] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[9] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[10] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[11] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[12] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[15] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
No Suggested Reading articles found!