Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016102    DOI: 10.1088/1674-1056/22/1/016102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elliptic hole in octagonal quasicrystals

Li Lian-He (李联和)
College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, China
Abstract  The stress potential function theory for plane elasticity of octagonal quasicrystals is developed. By introducing stress functions, a large number of basic equations involving elasticity of octagonal quasicrystals are reduced to a single partial differential equation. Furthermore, we develop the complex variable function method (Lekhnitskii method) for anisotropic elasticity theory to that for quasicrystals. With the help of conformal transformation, an exact solution for the elliptic hole of quasicrystals is presented. The solution of the Griffith crack problem, as a special case of the results, is obtained. As a consequence, the phonon stress intensity factor is derived analytically.
Keywords:  quasicrystals      plane elasticity      elliptic hole      stress potential  
Received:  17 March 2012      Revised:  07 June 2012      Accepted manuscript online: 
PACS:  61.44.Br (Quasicrystals)  
  62.20.D- (Elasticity)  
  02.30.Em (Potential theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11026175, 11262017, and 10761005), the Key Project of Ministry of Education of China (Grant No. 212029), the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2009MS0102 and 2009BS0104), and the Natural Science Foundation of Inner Mongolia Department of Public Education, China (Grant Nos. NJzy08024 and NJ10047).
Corresponding Authors:  Li Lian-He     E-mail:  nmglilianhe@163.com

Cite this article: 

Li Lian-He (李联和) Elliptic hole in octagonal quasicrystals 2013 Chin. Phys. B 22 016102

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Bindi L, Steinhardt Paul J, Yao N and Lu Peter J 2009 Science 324 1306
[3] Bak P 1985 Phys. Rev. B 32 5764
[4] Hu C Z, Wang R H and Ding D H 2000 Rep. Prog. Phys. 63 1
[5] Fan T Y, Xie L Y, Fan L and Wang Q Z 2011 Chin. Phys. B 20 076102
[6] Hu C Z, Wang R H, Yang W G and Ding D H 1996 Acta Cryst. A 52 251
[7] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Application (New York: Springer)
[8] Li W 2011 Chin. Phys. B 20 116201
[9] Wang J B, Mancini L, Wang R H and Gastaldi J 2003 J. Phys.: Condens. Matter 15 L363
[10] Li X F and Fan T Y 2002 Chin. Phys. 11 266
[11] Li L H 2010 Chin. Phys. B 19 046101
[12] Gao Y, Zhao Y T and Zhao B S 2007 Physica B 394 56
[13] Gao Y, Ricoeur A and Zhang L L 2011 Phys. Lett. A 375 2775
[14] Zhou W M and Fan T Y 2001 Chin. Phys. 10 743
[15] Lekhnitskii S G 1963 Theory of Elasticity of an Anisotropic Body (Moscow: MIR)
[1] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[2] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[3] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[4] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[5] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[8] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[9] Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(11): 116101.
[10] Screw dislocations interacting with two asymmetrical interfacial cracks emanating from an elliptical hole
Zeng Xin (曾鑫), Fang Qi-Hong (方棋洪), Liu You-Wen (刘又文), P. H. Wen. Chin. Phys. B, 2013, 22(1): 014601.
[11] Electronic and optical properties of CdS/CdZnS nanocrystals
A. John Peter, Chang Woo Lee. Chin. Phys. B, 2012, 21(8): 087302.
[12] The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm
Fan Tian-You (范天佑) and Fan Lei(范蕾). Chin. Phys. B, 2011, 20(3): 036102.
[13] Elastic analysis of an elliptic notch in quasicrystals of point group 10 subjected to shear loading
Li Lian-He(李联和). Chin. Phys. B, 2010, 19(4): 046101.
[14] Dynamic behaviour of the icosahedral Al--Pd--Mn quasicrystal with a Griffith crack
Wang Xiao-Fang(王晓芳), Fan Tian-You(范天佑), and Zhu Ai-Yu(祝爱玉). Chin. Phys. B, 2009, 18(2): 709-714.
[15] Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal
Guo Jun-Hong(郭俊宏) and Liu Guan-Ting(刘官厅). Chin. Phys. B, 2008, 17(7): 2610-2620.
No Suggested Reading articles found!