Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107203    DOI: 10.1088/1674-1056/add503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Realize high thermoelectric performance in both zone-melted ingots and powder-metallurgy bulks of Bi0.46Sb1.54Te3

Kai-Wen Zhao(赵凯雯), Meng-Yao Li(李梦瑶)†, Ying-Jiu Zhang(张迎九), and Hong-Zhang Song(宋红章)‡
Key Laboratory of Materials Physics of the Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China
Abstract  Bi(Sb)$_{2}$Te(Se)$_{3}$ alloys, as the only commercial thermoelectric materials, have been applied widely in cooling fields. While, the current energy conversion efficiency (dominated by the dimensionless ZT) of commercial products is still lower and cannot meet the market demand. In this paper, high thermoelectric performance at room temperature in both zone-melted (ZM) Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ ingots and powder-metallurgy (PM) Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ blocks with a large size was realized successfully by optimizing their preparation process. The peak ZT values of ZM and PM p-type Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ alloys reached 1.26 and 1.45, respectively. They are higher than those of all the n-type or p-type Bi$_{2}$Te$_{3}$-based products in current commercial applications. In particular, their production process of large size p-type Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ alloys could be directly industrialized.
Keywords:  thermoelectric      Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$      large size  
Received:  19 March 2025      Revised:  25 April 2025      Accepted manuscript online:  07 May 2025
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFE0105200), the China Postdoctoral Science Foundation (Grant No. 2023M743151), and the Natural Science Foundation of Henan Province, China (Grant No. 242300420304).
Corresponding Authors:  Meng-Yao Li, Meng-Yao Li     E-mail:  limengyaorz@zzu.edu.cn;hzsong@zzu.edu.cn

Cite this article: 

Kai-Wen Zhao(赵凯雯), Meng-Yao Li(李梦瑶), Ying-Jiu Zhang(张迎九), and Hong-Zhang Song(宋红章) Realize high thermoelectric performance in both zone-melted ingots and powder-metallurgy bulks of Bi0.46Sb1.54Te3 2025 Chin. Phys. B 34 107203

[1] Dai S, Lin Z, Hu H, Wang Y and Zeng L 2024 Appl. Phys. Rev. 11 041319
[2] Li X, Zhang X, Xu J, Duan Z, Xu Y, Zhang X, Zhang L, Wang Y and Chu P K 2024 Adv. Sci. 11 2305467
[3] Qin Y, Qin B, Hong T, Zhang X, Wang D, Liu D, Wang Z Y, Su L, Wang S and Gao X 2024 Science 383 1204
[4] ChenWY, Shi X L, Zou J and Chen Z G 2022 Mater. Sci. Eng. R: Rep. 151 100700
[5] Deng T, Gao Z, Li Z, Qiu P, Li Z, Yuan X, Ming C, Wei T R, Chen L and Shi X 2024 Science 386 1112
[6] Hu H, Ju Y, Yu J, Wang Z, Pei J, Thong H C, Li J W, Cai B, Liu F and Han Z 2024 Nat. Mater. 23 527
[7] Tian Q, Zhang W, Qin Z and Qin G 2021 Nanoscale 13 18032
[8] Zhou Z, Huang Y,Wei B, Yang Y, Yu D, Zheng Y, He D, ZhangW, Zou M and Lan J L 2023 Nat. Commun. 14 2410
[9] Lei J, Wuliji H, Ren Q, Hao X, Dong H, Chen H, Wei T R, Zhang J, Qiu P and Zhao K 2024 Energy & Environmental Science 17 1416
[10] Zhu Y, Wan B, Shen W, Zhang Z, Fang C, Wang Q, Chen L, Zhang Y and Jia X 2023 Appl. Phys. Lett. 122 133903
[11] Tian Q, Li P, Wei J, Xing Z, Qin G and Qin Z 2023 Phys. Rev. B 108 115130
[12] Liu S, Bai S, Wen Y, Lou J, Jiang Y, Zhu Y, Liu D, Li Y, Shi H and Liu S 2025 Science 387 202
[13] Shi X, Song S, Gao G and Ren Z 2024 Science 384 757
[14] Wu B, Zhao X, Jia M, Yang D, Liu Y, Song H, Wang D, Cabot A and Li M 2024 Appl. Phys. Lett. 125 223901
[15] Zhu Z, Zhang Y, Song H and Li X J 2018 Appl. Phys. A 124 871
[16] Zhu Z, Zhang Y, Song H and Li X J 2018 Appl. Phys. A 124 747
[17] Yang S, Ming H, Li D, Chen T, Li S, Zhang J, Xin H and Qin X 2023 Chem. Eng. J. 455 140923
[18] Xu Y, Xia S, Zhang Y, Song H, Liu S and Hao H 2024 Appl. Phys. A 130 203
[19] Ma R, Yang D, Li X, Song H and Zhang Y 2022 Appl. Phys. A 128 1134
[20] Ma R, Yang D, Tian Z, Song H and Zhang Y 2022 Appl. Phys. A 128 531
[21] Zhu Z, Zhang Y, Song H and Li X J 2019 Appl. Phys. A 125 572
[22] Cao R, Li E, Hu Q, Zhu Z, Zhang Y, Li X, Hu X and Song H 2018 Appl. Phys. A 124 669
[23] Xue T,Wei P, Liu C, Li L, ZhuW, Nie X and Zhao W 2024 Chin. Phys. B 33 087403
[24] Ren K, Huo W, Chen S, Cheng Y, Wang B and Zhang G 2024 Chin. Phys. B 33 057202
[25] He Q, Yang D, Zhang W and Song H 2024 Mod. Phys. Lett. B 38 2450224
[26] He Q, ZhangW, Liu X and Song H 2022 Mod. Phys. Lett. B 36 2250157
[27] Zhang Y, Fan M M, Ruan C C, Zhang Y W, Li X J and Song H Z 2020 Mod. Phys. Lett. B 34 2050019
[28] Li S, Wang L, Ma D, Jiang Y, Zhang J and Guo K 2024 ACS Appl. Mater. Interfaces 16 3586
[29] Li S, Zhao W, Cheng Y, Chen L, Xu M, Guo K and Pan F 2022 ACS Appl. Mater. Interfaces 15 1167
[30] Liu Q, Lu Y, Zhu H, Qian X, Yang R and Zhao H 2024 Sci. Bull. 69 295
[31] Yen W T, Wang K K and Wu H J 2023 Materials Today Physics 34 101065
[32] Zhang X, Wang Z, Hou Y, Liu Y, Hu L, Xie W, Shi J, Wei J and Xiong R 2024 Chem. Eng. J. 481 148530
[33] Zheng Y, Tan X Y, Wan X, Cheng X, Liu Z and Yan Q 2019 ACS Appl. Energy Mater. 3 2078
[34] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884
[35] Pan Y, Wei T R, Cao Q and Li J F 2015 Mater. Sci. Eng. B 197 75
[36] Zhang W, Li M, Jia M, Fan Y, Zhang Y, Tian Z, Li X, Liu Y, Yang D, Song H and Cabot A 2024 J. Eur. Ceram. Soc. 44 5088
[37] Cao R, Zhu Z, Li X J, Hu X and Song H 2019 Appl. Phys. A 125 126
[38] Cao R, Liu X, Tian Z, Zhang Y, Li X J and Song H 2022 Appl. Phys. A 128 1130
[39] Xu Z, Hu L, Ying P, Zhao X and Zhu T 2015 Acta Materialia 84 385
[40] Xiong C, Shi F, Wang H, Cai J, Zhao S, Tan X, Hu H, Liu G, Noudem J G and Jiang J 2021 ACS Appl. Mater. Interfaces 13 15429
[41] ZhangW, Liu X, Tian Z, Zhang Y, Li X J and Song H 2023 J. Electron. Mater. 52 6682
[42] Zhang W, Li M, Zhang Y, Tian Z, Li X J and Song H 2024 J. Alloys Compd. 993 174672
[43] Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H and Yin Z Z 2010 Energy Environm. Sci. 3 1519
[44] Pei J, Cai B, Zhuang H L and Li J F 2020 Nat. Sci. Rev. 7 1856
[45] Huang H, Li J, Chen S, Zhang Z, Yan Y, Su X and Tang X 2020 J. Solid State Chem. 288 121433
[46] Bies W, Radtke R, Ehrenreich H and Runge E 2002 Phys. Rev. B 65 085208
[47] Yang S, Ming H, Li D, Chen T, Li S, Zhang J, Xin H and Qin X 2023 Chem. Eng. J. 455 140923
[48] Li S, Wang L, Ma D, Jiang Y, Zhang J and Guo K 2024 ACS Appl. Mater. Interfaces 16 3586
[49] Ahmad A, Zhu B, Wang Z, Gui Z, Wang W, Wang T, Yu Y, Huang L and He J 2024 Energy Environm. Sci. 17 695
[50] Liu X, Cao R, Zhang Y, Tian Z, Li X J and Song H 2022 J. Alloys Compd. 899 163296
[51] Mehta R J, Zhang Y, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T and Ramanath G 2012 Nat. Mater. 11 233
[52] Li J, Tan Q, Li J F, Liu D W, Li F, Li Z Y, Zou M and Wang K 2013 Adv. Funct. Mater. 23 4317
[53] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211
[54] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S and Lee Y H 2015 Science 348 109
[55] Hong M, Chen Z G, Yang L and Zou J 2016 Nano Energy 20 144
[56] Yu Y, He D S, Zhang S, Cojocaru-Mirédin O, Schwarz T, Stoffers A, Wang X Y, Zheng S, Zhu B and Scheu C 2017 Nano Energy 37 203
[57] Deng R, Su X, Zheng Z, Liu W, Yan Y, Zhang Q, Dravid V P, Uher C, Kanatzidis M G and Tang X 2018 Sci. Adv. 4 eaar5606
[58] Liu Y, Zhang Y, Ortega S, Ibáñez M, Lim K H, Grau-Carbonell A, Martí-Sánchez S, Ng K M, Arbiol J and Kovalenko M V 2018 Nano Lett. 18 2557
[59] Pan Y, Qiu Y, Witting I, Zhang L, Fu C, Li J W, Huang Y, Sun F H, He J and Snyder G J 2019 Energy Environm. Sci. 12 624
[60] Li C, Ma S, Wei P, Zhu W, Nie X, Sang X, Sun Z, Zhang Q and Zhao W 2020 Energy Environm. Sci. 13 535
[61] Zhuang H L, Pei J, Cai B, Dong J, Hu H, Sun F H, Pan Y, Snyder G J and Li J F 2021 Adv. Funct. Mater. 31 2009681
[62] Wang X, Cheng J, Yin L, Zhang Z, Wang X, Sui J, Liu X, Mao J, Cao F and Zhang Q 2022 Adv. Funct. Mater.s 32 2200307
[63] Sun Y, Wu H, Dong X, Xie L, Liu Z, Liu R, Zhang Q, Cai W, Guo F and Sui J 2023 Adv. Funct. Mater. 33 2301423
[64] Shi Y C, Yang J, Wang Y, Li Z G, Zhong T Y, Ge Z H, Feng J and He J 2024 Energy Environm. Sci. 17 2326
[65] Zhuang H L, Cai B, Pan Y, Su B, Jiang Y, Pei J, Liu F, Hu H, Yu J and Li J W 2024 Nat. Sci. Rev. 11 nwae329
[66] Xu S, Horta S, Lawal A, Maji K, Lorion M and Ibáñez M 2025 Science 387 845
[1] Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain
Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(9): 097305.
[2] Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康). Chin. Phys. B, 2025, 34(9): 097306.
[3] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[4] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[5] Enhanced thermoelectric properties of the topological phase of monolayer HfC
Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东). Chin. Phys. B, 2025, 34(5): 057301.
[6] Corrigendum to “Enhanced thermoelectric properties of the topological phase of monolayer HfC”
Wenlai Mu(母文来), Nisar Muhammad(穆罕默德 尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东). Chin. Phys. B, 2025, 34(10): 109901.
[7] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[8] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[9] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[10] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[11] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[12] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[13] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[14] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[15] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
No Suggested Reading articles found!