|
|
Energy conversion materials for the space solar power station |
Xiao-Na Ren(任晓娜)1,†, Chang-Chun Ge(葛昌纯)1, Zhi-Pei Chen(陈志培)1, Irfan(伊凡)1, Yongguang Tu(涂用广)2, Ying-Chun Zhang(张迎春)1, Li Wang(王立)3, Zi-Li Liu(刘自立)3, and Yi-Qiu Guan(关怡秋)1 |
1 University of Science and Technology Beijing, Beijing 100083, China; 2 Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics(IFE)&Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; 3 Qian Xuesen Laboratory, China Academy of Space Technology(CAST), Beijing 100081, China |
|
|
Abstract Since it was first proposed, the space solar power station (SSPS) has attracted great attention all over the world; it is a huge space system and provides energy for Earth. Although several schemes and abundant studies on the SSPS have been proposed and conducted, it is still not realized. The reason why SSPS is still an idea is not only because it is a giant and complex project, but also due to the requirement for various excellent space materials. Among the diverse required materials, we believe energy materials are the most important. Herein, we review the space energy conversion materials for the SSPS.
|
Received: 06 August 2022
Revised: 03 January 2023
Accepted manuscript online: 22 February 2023
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
42.55.-f
|
(Lasers)
|
|
Fund: Project supported by Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-20-006A2). |
Corresponding Authors:
Xiao-Na Ren
E-mail: renxn@ustb.edu.cn
|
Cite this article:
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋) Energy conversion materials for the space solar power station 2023 Chin. Phys. B 32 078802
|
[1] Yurish S Y 2021 Advances in Optics: Reviews Vol. 5 pp. 417-471 [2] Glaser P E 1968 Science 162 857 [3] Yang J C and de Groh K K 2010 MRS Bull. 35 12 [4] Xie J, Li Y Z, Yang L, Sun Y and Yuan M 2022 J. Energy Storage 55 105735 [5] Edwards D L, Tighe A P, Van Eesbeek M, Kimoto Y and de Groh K K 2010 MRS Bull. 35 25 [6] Romano V, Agresti A, Verduci R and D'Angelo G 2022 ACS Energy Lett. 7 2490 [7] Pathi P, Peer A and Biswas R 2017 Nanomaterials 7 17 [8] Nakao Y and Hiyama T 2011 Chem. Soc. Rev. 40 4893 [9] Okil M, Salem M S, Abdolkader T M and Shaker A 2022 Silicon 14 1895 [10] Xiao S and Xu S 2014 Solid State Mater. Sci. 39 277 [11] Gibb J 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) pp. 3530-3534 [12] Boddu P, Kumar B S, Ganapathy K, et al. 2019 Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India. 2019 [13] J Li, Aierken A, Liu Y, Zhuang Y and Zhang Q 2021 Front. Phys. 8 631925 [14] N H 2010 Sol. Energy Mater. Sol. Cells 94 1314 [15] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 [16] Shen L, Fang Y, Wang D, Bai Y, Deng Y, Wang M, Lu Y and Huang J 2016 Adv. Mater. 28 10794 [17] D'Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586 [18] Luo D, Su R, Zhang W, Gong Q and Zhu R 2020 Nat. Rev. Mater. 5 44 [19] Zhang Y, Tu Y, Yang X, Su R, Yang W, Yu M, Wang Y, Huang W, Gong Q and Zhu R 2020 ACS Appl. Mater. Interfaces 12 24905 [20] Zhang W, Eperon G E and Snaith H J 2016 Nat. Energy 1 1 [21] Anon Best Research-Cell Efficiency Chart [22] Yang S, Xu Z, Xue S, Kandlakunta P, Cao L and Huang J 2019 Adv. Mater. 31 1805547 [23] Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D'Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W and Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121 [24] Tu Y, Xu G, Yang X, Zhang Y, Li Z, Su R, Luo D, Yang W, Miao Y, Cai R, Jiang L, Du X, Yanchu Y, Liu Q, Gao Y, Zhao S, Huang W, Gong Q and Zhu R 2019 Sci. China Phys. Mech. Astron. 62 974221-1 [25] Reb L K, Böhmer M, Predeschly B, Grott S, Weindl C L, Ivandekic G I, Guo R, Dreißigacker C, Gernhäuser R, Meyer A and Müller-Buschbaum P 2020 Joule 4 1880 [26] Dias J A, Andrade M A S and Mascaro L H 2021 Green Sustainable Process for Chemical and Environmental Engineering and Science (Elsevier) pp. 245-270 [27] Mufti N, Amrillah T, Taufiq A, Sunaryono, Aripriharta, Diantoro M, Zulhadjri and Nur H 2020 Sol. Energy 207 1146 [28] Noufi R and Zweibel K 2006 2006 IEEE 4th World Conference on Photovoltaic Energy Conference pp. 317-320 [29] Guillemoles J F 2002 Thin Solid Films 403 405 [30] Ramanujam J and Singh U P 2017 Energy Environ. Sci. 10 1306 [31] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W 2019 Prog. Photovolt. 27 3 [32] Lee T D and Ebong A U 2017 Renew. Sustain. Energy Rev. 70 1286 [33] Guo Q, Ford G M, Hillhouse H W and Agrawal R 2009 Nano Lett. 9 3060 [34] Devaney W E, Chen W S, Stewart J M and Mickelsen R A 1990 IEEE Trans. Electron Devices 37 428 [35] Alhammadi S, Park H and Kim W K 2019 Materials 12 1365 [36] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W and Powalla M 2016 Phys. Status Solidi RRL 10 583 [37] Löckinger J, Nishiwaki S, Andres C, Erni R, Rossell M D, Romanyuk Y E, Buecheler S and Tiwari A N 2018 ACS Appl. Mater. Interfaces 10 43603 [38] Zortea L, Nishiwaki S, Weiss T P, Haass S, Perrenoud J, Greuter L, Feurer T, Palaniswamy G, Buecheler S and Tiwari A N 2018 Sol. Energy 175 25 [39] Bhattacharya R N 2013 Sol. Energy Mater. Sol. Cells 113 96 [40] Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J and Seyrling S 2011 Nat. Mater. 10 857 [41] Balestrieri M, Achard V, Hildebrandt T, Lombez L, Jubault M, Béchu S, Bouttemy M, Etcheberry A, Lincot D and Donsanti F 2018 IEEE J. Photovolt. 8 1343 [42] Balestrieri M, Achard V, Hildebrandt T, Lombez L, Jubault M, Béchu S, Bouttemy M, Etcheberry A, Lincot D and Donsanti F 2013 Nat. Mater. 12 1107 [43] Friedlmeier T M, Jackson P, Bauer A, Hariskos D, Kiowski O, Wuerz R and Powalla M 2015 IEEE J. Photovolt. 5 1487 [44] Hultqvist A, Platzer-Björkman C, Zimmermann U, Edoff M and Törndahl T 2012 Prog. Photovolt. Res. Appl. 20 883 [45] Lindahl J, Zimmermann U, Szaniawski P, Törndahl T, Hultqvist A, Salomé P, Platzer-Björkman C and Edoff M 2013 IEEE J. Photovolt. 3 1100 [46] Jun B M, Kim G, Kim E, Kim H, Lee D J, Kim H S, Choi S G, Shan F and Kim S J 2019 J. Nanosci. Nanotechnol. 19 1814 [47] Spiering S, Nowitzki A, Kessler F, Igalson M and Maksoud H A 2016 Sol. Energy Mater. Sol. Cells 144 544 [48] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T and Sugimoto H 2019 IEEE J. Photovolt. 9 1863 [49] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399 [50] Anon 1985 J. Non-Cryst. Solids 74 47 [51] LaLonde A D, Pei Y and Snyder G J 2011 Energy Environ. Sci. 4 2090 [52] Pei Y, LaLonde A, Iwanaga S and Snyder G J 2011 Energy Environ. Sci. 4 2085 [53] Tohidi F, Ghazanfari Holagh S and Chitsaz A 2022 Appl. Therm. Eng. 201 117793 [54] Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B and Pei Y 2019 Joule 3 1276 [55] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [56] Miyamoto Y, Niino M and Koizumi M 1997 Functionally Graded Materials 1996, Ed. Shiota I and Miyamoto Y (Amsterdam: Elsevier Science B.V.) pp. 1-8 [57] Zimmermann C G 2010 MRS Bull. 35 48 [58] Candolfi C, Oualid S E, Ibrahim D, Misra S, Hamouli O E, Léon A, Dauscher A, Masschelein P, Gall P, Gougeon P, Semprimoschnig C and Lenoir B 2021 CEAS Space J. 13 325 [59] Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2021 Prog. Photovolt. Res. Appl. 29 3 [60] Yang J, Bao Q, Shen L and Ding L 2020 Nano Energy 76 105019 [61] Geisz J F, France R M, Schulte K L, Steiner M A, Norman A G, Guthrey H L, Young M R, Song T and Moriarty T 2020 Nat. Energy 5 326 [62] Ho-Baillie A W Y, Sullivan H G J, Bannerman T A, Talathi Harsh P, Bing J, Tang S, Xu A, Bhattacharyya D, Cairns I H and McKenzie David R 2022 Adv. Mater. Technol. 7 2101059 [63] Shi S, Yao L, Ma P, Jiao Y, Zheng X, Ning D, Chen M, Sui F, Liu H, Yang C and Li W 2021 Mater. Today Energy 20 100640 [64] Kandare S P, Bhoraskar V N, Phatangare A B, Rao R, Rao M N, Dhole S D and Dahiwale S S 2021 J. Mater. Sci. Mater. Electron. 32 19042 [65] Benisha C A and Routray S 2022 Silicon 14 8045 [66] Jia B, Huang Y, Wang Y, Zhou Y, Zhao X, Ning S, Xu X, Lin P, Chen Z, Jiang B and He J 2022 Energy Environ. Sci. 15 1920 [67] Xing Y, Liu R, Liao J, Zhang Q, Xia X, Wang C, Huang H, Chu J, Gu M, Zhu T, Zhu C, Xu F, Yao D, Zeng Y, Bai S, Uher C and Chen L 2019 Energy Environ. Sci. 12 3390 [68] Shi X L, Liu W D, Li M, Sun Q, Xu S D, Du D, Zou J and Chen Z G 2022 Adv. Energy Mater. 12 2200670 [69] Perumal S, Samanta M, Ghosh T, Shenoy U S, Bohra A K, Bhattacharya S, Singh A, Waghmare U V and Biswas K 2019 Joule 3 2565 [70] Hong M, Zou J and Chen Z G 2019 Adv. Mater. 31 1807071 [71] Liu Z, Sun J, Mao J, Zhu H, Ren W, Zhou J, Wang Z, Singh D J, Sui J, Chu C W and Ren Z 2018 Proc. Natl. Acad. Sci. USA 115 5332 [72] Smullin L D and Fiocco G 1962 Nature 194 1267 [73] Young C G 1966 Appl. Opt. 5 993 [74] Kiss Z J, Lewis H R and Duncan R C 1963 Appl. Phys. Lett. 2 93 [75] Yu A W, Li S X, Shaw G B, Seas A and Guzek J 2009 Proc. SPIE - Int. Soc. Opt. Eng. 7193 24 [76] Hannan W 1965 Applied Research Defense Electronic Products Radio Corporation of America Camden, New Jersey 08102 222 [77] Lando M, Kagan J A, Shimony Y, Kalisky Y Y, Noter Y, Yogev A, Rotman S R and Rosenwaks S 1997 10th Meeting on Optical Engineering in Israel, Ed. Shladov I and Rotman S R (Jerusalem, Israel) p. 196 [78] Anon 1977 Opt. Laser Technol. 9 207 [79] Guan Z, Zhao C, Li J, He D and Zhang H 2018 Opt. Laser Technol. 107 158 [80] Nakai S 2004 AIP Conference Proceedings 702 3 [81] Eubanks P, Marzocca P, Payziyev S and Radley C 2015 White Pap. Inf. Program NNH15ZOA001L [82] Masuda T, Iyoda M, Yasumatsu Y, Dottermusch S, Howard I A, Richards B S, Bisson J F and Endo M 2020 Commun. Phys. 3 60 [83] Masuda T, Zhang Y, Ding C, Liu F, Sasaki K, Shen Q and Endo M 2020 J. Appl. Phys. 127 243104 [84] Guan Z, Zhao C M, Yang S H, Wang Y, Ke J Y and Zhang H Y 2017 Laser Phys. Lett. 14 055804 [85] Jones W 1979 Terrestrial Energy Systems Conference (Orlando: American Institute of Aeronautics and Astronautics) [86] Guilhot D and Ribes-Pleguezuelo P 2019 Instruments 3 50 [87] Kato T, Ito H, Hasegawa K, Ichikawa T, Ikesue A, Mizuno S, Takeda Y, Ichiki A and Motohiro T 2020 Opt. Mater. 110 110481 [88] Motohiro T, Takeda Y, Ito H, Hasegawa K, Ikesue A, Ichikawa T, Higuchi K, Ichiki A, Mizuno S, Ito T, Yamada N, Luitel H N, Kajino T, Terazawa H, Takimoto S and Watanabe K 2017 Jpn. J. Appl. Phys. 56 08MA07 [89] Liang D and Almeida J 2011 Opt. Express 19 26399 [90] Liang D, Almeida J, Vistas C R and Guillot E 2017 Sol. Energy Mater. Sol. Cells 159 435 [91] Xu P, Yang S, Zhao C, Guan Z, Wang H, Zhang Y, Zhang H and He T 2014 Appl. Opt. 53 3941 [92] Yabe T, Ohkubo T, Uchida S, Yoshida K, Nakatsuka M, Funatsu T, Mabuti A, Oyama A, Nakagawa K, Oishi T, Daito K, Behgol B, Nakayama Y, Yoshida M, Motokoshi S, Sato Y and Baasandash C 2007 Appl. Phys. Lett. 90 261120 [93] Liang D, Vistas C R, Tibúrcio B D and Almeida J 2018 Sol. Energy Mater. Sol. Cells 185 75 [94] Kato T, Ito H, Hasegawa K, Ichikawa T, Ikesue A, Mizuno S, Takeda Y, Ichiki A and Motohiro T 2019 Jpn. J. Appl. Phys. 58 062007 [95] Ikesue A, Kamata K and Yoshida K 1995 J. Am. Ceram. Soc. 78 2545 [96] Vistas C R, Liang D, Garcia D, Almeida J, Tibúrcio B D and Guillot E 2020 Optik 207 163795 [97] Meng J X, Li J Q, Shi Z P and Cheah K W 2008 Appl. Phys. Lett. 93 221908 [98] Samuel P, Yanagitani T, Yagi H, Nakao H, Ueda K I and Babu S M 2010 J. Alloys Compd. 507 475 [99] Li Y, Zhou S, Lin H, Hou X and Li W 2010 Opt. Mater. 32 1223 [100] Villars B, Hill E S and Durfee C G 2015 Opt. Lett. 40 3049 [101] Payziyev Sh, Makhmudov Kh and Abdel-Hadi Y A 2018 Optik 156 891 [102] Yagi H, Yanagitani T, Yoshida H, Nakatsuka M and Ueda K 2007 Opt. Laser Technol. 39 1295 [103] Zhao C, Guan Z and Zhang H 2018 Solid State Lasers XXVII: Technology and Devices, Ed. Clarkson W A and Shori R K (San Francisco: SPIE) 10511 [104] Garcia D, Liang D, Vistas C R, Costa H, Catela M, Tibúrcio B D and Almeida J 2022 Energies 15 5292 [105] Wang X, Li W, Tian K, Lewis E, Wang S, Brambilla G, Dong Y, Wu X and Wang P 2019 Ceram. Int. 45 6738 [106] Wang S, Kuang F, Ye Q, Wang Y, Tang M and Ge C 2016 J. Mater. Sci. Technol. 32 583 [107] Wang S M, Kuang F H, Yan Q Z, Ge C C and Qi L H 2011 J. Alloys Compd. 509 2819 [108] Wang S 2010 Environ. Sci. Technol. 44 4816 [109] Wang S M, Kuang F H and Li J 2010 Phase Transit. 83 397 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|