Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078802    DOI: 10.1088/1674-1056/acbdee
REVIEW Prev   Next  

Energy conversion materials for the space solar power station

Xiao-Na Ren(任晓娜)1,†, Chang-Chun Ge(葛昌纯)1, Zhi-Pei Chen(陈志培)1, Irfan(伊凡)1, Yongguang Tu(涂用广)2, Ying-Chun Zhang(张迎春)1, Li Wang(王立)3, Zi-Li Liu(刘自立)3, and Yi-Qiu Guan(关怡秋)1
1 University of Science and Technology Beijing, Beijing 100083, China;
2 Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics(IFE)&Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
3 Qian Xuesen Laboratory, China Academy of Space Technology(CAST), Beijing 100081, China
Abstract  Since it was first proposed, the space solar power station (SSPS) has attracted great attention all over the world; it is a huge space system and provides energy for Earth. Although several schemes and abundant studies on the SSPS have been proposed and conducted, it is still not realized. The reason why SSPS is still an idea is not only because it is a giant and complex project, but also due to the requirement for various excellent space materials. Among the diverse required materials, we believe energy materials are the most important. Herein, we review the space energy conversion materials for the SSPS.
Keywords:  space solar power station      photovoltaic cell      thermoelectric materials      lasers  
Received:  06 August 2022      Revised:  03 January 2023      Accepted manuscript online:  22 February 2023
PACS:  88.40.H- (Solar cells (photovoltaics))  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  82.47.Aa (Lithium-ion batteries)  
  42.55.-f (Lasers)  
Fund: Project supported by Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-20-006A2).
Corresponding Authors:  Xiao-Na Ren     E-mail:  renxn@ustb.edu.cn

Cite this article: 

Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋) Energy conversion materials for the space solar power station 2023 Chin. Phys. B 32 078802

[1] Yurish S Y 2021 Advances in Optics: Reviews Vol. 5 pp. 417-471
[2] Glaser P E 1968 Science 162 857
[3] Yang J C and de Groh K K 2010 MRS Bull. 35 12
[4] Xie J, Li Y Z, Yang L, Sun Y and Yuan M 2022 J. Energy Storage 55 105735
[5] Edwards D L, Tighe A P, Van Eesbeek M, Kimoto Y and de Groh K K 2010 MRS Bull. 35 25
[6] Romano V, Agresti A, Verduci R and D'Angelo G 2022 ACS Energy Lett. 7 2490
[7] Pathi P, Peer A and Biswas R 2017 Nanomaterials 7 17
[8] Nakao Y and Hiyama T 2011 Chem. Soc. Rev. 40 4893
[9] Okil M, Salem M S, Abdolkader T M and Shaker A 2022 Silicon 14 1895
[10] Xiao S and Xu S 2014 Solid State Mater. Sci. 39 277
[11] Gibb J 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) pp. 3530-3534
[12] Boddu P, Kumar B S, Ganapathy K, et al. 2019 Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India. 2019
[13] J Li, Aierken A, Liu Y, Zhuang Y and Zhang Q 2021 Front. Phys. 8 631925
[14] N H 2010 Sol. Energy Mater. Sol. Cells 94 1314
[15] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[16] Shen L, Fang Y, Wang D, Bai Y, Deng Y, Wang M, Lu Y and Huang J 2016 Adv. Mater. 28 10794
[17] D'Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586
[18] Luo D, Su R, Zhang W, Gong Q and Zhu R 2020 Nat. Rev. Mater. 5 44
[19] Zhang Y, Tu Y, Yang X, Su R, Yang W, Yu M, Wang Y, Huang W, Gong Q and Zhu R 2020 ACS Appl. Mater. Interfaces 12 24905
[20] Zhang W, Eperon G E and Snaith H J 2016 Nat. Energy 1 1
[21] Anon Best Research-Cell Efficiency Chart
[22] Yang S, Xu Z, Xue S, Kandlakunta P, Cao L and Huang J 2019 Adv. Mater. 31 1805547
[23] Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, Vodnik J, Devisscher D, Kesters J, D'Haen J, Franquet A, Spampinato V, Conard T, Maes W, Deferme W and Manca J V 2018 Sol. Energy Mater. Sol. Cells 182 121
[24] Tu Y, Xu G, Yang X, Zhang Y, Li Z, Su R, Luo D, Yang W, Miao Y, Cai R, Jiang L, Du X, Yanchu Y, Liu Q, Gao Y, Zhao S, Huang W, Gong Q and Zhu R 2019 Sci. China Phys. Mech. Astron. 62 974221-1
[25] Reb L K, Böhmer M, Predeschly B, Grott S, Weindl C L, Ivandekic G I, Guo R, Dreißigacker C, Gernhäuser R, Meyer A and Müller-Buschbaum P 2020 Joule 4 1880
[26] Dias J A, Andrade M A S and Mascaro L H 2021 Green Sustainable Process for Chemical and Environmental Engineering and Science (Elsevier) pp. 245-270
[27] Mufti N, Amrillah T, Taufiq A, Sunaryono, Aripriharta, Diantoro M, Zulhadjri and Nur H 2020 Sol. Energy 207 1146
[28] Noufi R and Zweibel K 2006 2006 IEEE 4th World Conference on Photovoltaic Energy Conference pp. 317-320
[29] Guillemoles J F 2002 Thin Solid Films 403 405
[30] Ramanujam J and Singh U P 2017 Energy Environ. Sci. 10 1306
[31] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W 2019 Prog. Photovolt. 27 3
[32] Lee T D and Ebong A U 2017 Renew. Sustain. Energy Rev. 70 1286
[33] Guo Q, Ford G M, Hillhouse H W and Agrawal R 2009 Nano Lett. 9 3060
[34] Devaney W E, Chen W S, Stewart J M and Mickelsen R A 1990 IEEE Trans. Electron Devices 37 428
[35] Alhammadi S, Park H and Kim W K 2019 Materials 12 1365
[36] Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W and Powalla M 2016 Phys. Status Solidi RRL 10 583
[37] Löckinger J, Nishiwaki S, Andres C, Erni R, Rossell M D, Romanyuk Y E, Buecheler S and Tiwari A N 2018 ACS Appl. Mater. Interfaces 10 43603
[38] Zortea L, Nishiwaki S, Weiss T P, Haass S, Perrenoud J, Greuter L, Feurer T, Palaniswamy G, Buecheler S and Tiwari A N 2018 Sol. Energy 175 25
[39] Bhattacharya R N 2013 Sol. Energy Mater. Sol. Cells 113 96
[40] Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J and Seyrling S 2011 Nat. Mater. 10 857
[41] Balestrieri M, Achard V, Hildebrandt T, Lombez L, Jubault M, Béchu S, Bouttemy M, Etcheberry A, Lincot D and Donsanti F 2018 IEEE J. Photovolt. 8 1343
[42] Balestrieri M, Achard V, Hildebrandt T, Lombez L, Jubault M, Béchu S, Bouttemy M, Etcheberry A, Lincot D and Donsanti F 2013 Nat. Mater. 12 1107
[43] Friedlmeier T M, Jackson P, Bauer A, Hariskos D, Kiowski O, Wuerz R and Powalla M 2015 IEEE J. Photovolt. 5 1487
[44] Hultqvist A, Platzer-Björkman C, Zimmermann U, Edoff M and Törndahl T 2012 Prog. Photovolt. Res. Appl. 20 883
[45] Lindahl J, Zimmermann U, Szaniawski P, Törndahl T, Hultqvist A, Salomé P, Platzer-Björkman C and Edoff M 2013 IEEE J. Photovolt. 3 1100
[46] Jun B M, Kim G, Kim E, Kim H, Lee D J, Kim H S, Choi S G, Shan F and Kim S J 2019 J. Nanosci. Nanotechnol. 19 1814
[47] Spiering S, Nowitzki A, Kessler F, Igalson M and Maksoud H A 2016 Sol. Energy Mater. Sol. Cells 144 544
[48] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T and Sugimoto H 2019 IEEE J. Photovolt. 9 1863
[49] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399
[50] Anon 1985 J. Non-Cryst. Solids 74 47
[51] LaLonde A D, Pei Y and Snyder G J 2011 Energy Environ. Sci. 4 2090
[52] Pei Y, LaLonde A, Iwanaga S and Snyder G J 2011 Energy Environ. Sci. 4 2085
[53] Tohidi F, Ghazanfari Holagh S and Chitsaz A 2022 Appl. Therm. Eng. 201 117793
[54] Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B and Pei Y 2019 Joule 3 1276
[55] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[56] Miyamoto Y, Niino M and Koizumi M 1997 Functionally Graded Materials 1996, Ed. Shiota I and Miyamoto Y (Amsterdam: Elsevier Science B.V.) pp. 1-8
[57] Zimmermann C G 2010 MRS Bull. 35 48
[58] Candolfi C, Oualid S E, Ibrahim D, Misra S, Hamouli O E, Léon A, Dauscher A, Masschelein P, Gall P, Gougeon P, Semprimoschnig C and Lenoir B 2021 CEAS Space J. 13 325
[59] Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N and Hao X 2021 Prog. Photovolt. Res. Appl. 29 3
[60] Yang J, Bao Q, Shen L and Ding L 2020 Nano Energy 76 105019
[61] Geisz J F, France R M, Schulte K L, Steiner M A, Norman A G, Guthrey H L, Young M R, Song T and Moriarty T 2020 Nat. Energy 5 326
[62] Ho-Baillie A W Y, Sullivan H G J, Bannerman T A, Talathi Harsh P, Bing J, Tang S, Xu A, Bhattacharyya D, Cairns I H and McKenzie David R 2022 Adv. Mater. Technol. 7 2101059
[63] Shi S, Yao L, Ma P, Jiao Y, Zheng X, Ning D, Chen M, Sui F, Liu H, Yang C and Li W 2021 Mater. Today Energy 20 100640
[64] Kandare S P, Bhoraskar V N, Phatangare A B, Rao R, Rao M N, Dhole S D and Dahiwale S S 2021 J. Mater. Sci. Mater. Electron. 32 19042
[65] Benisha C A and Routray S 2022 Silicon 14 8045
[66] Jia B, Huang Y, Wang Y, Zhou Y, Zhao X, Ning S, Xu X, Lin P, Chen Z, Jiang B and He J 2022 Energy Environ. Sci. 15 1920
[67] Xing Y, Liu R, Liao J, Zhang Q, Xia X, Wang C, Huang H, Chu J, Gu M, Zhu T, Zhu C, Xu F, Yao D, Zeng Y, Bai S, Uher C and Chen L 2019 Energy Environ. Sci. 12 3390
[68] Shi X L, Liu W D, Li M, Sun Q, Xu S D, Du D, Zou J and Chen Z G 2022 Adv. Energy Mater. 12 2200670
[69] Perumal S, Samanta M, Ghosh T, Shenoy U S, Bohra A K, Bhattacharya S, Singh A, Waghmare U V and Biswas K 2019 Joule 3 2565
[70] Hong M, Zou J and Chen Z G 2019 Adv. Mater. 31 1807071
[71] Liu Z, Sun J, Mao J, Zhu H, Ren W, Zhou J, Wang Z, Singh D J, Sui J, Chu C W and Ren Z 2018 Proc. Natl. Acad. Sci. USA 115 5332
[72] Smullin L D and Fiocco G 1962 Nature 194 1267
[73] Young C G 1966 Appl. Opt. 5 993
[74] Kiss Z J, Lewis H R and Duncan R C 1963 Appl. Phys. Lett. 2 93
[75] Yu A W, Li S X, Shaw G B, Seas A and Guzek J 2009 Proc. SPIE - Int. Soc. Opt. Eng. 7193 24
[76] Hannan W 1965 Applied Research Defense Electronic Products Radio Corporation of America Camden, New Jersey 08102 222
[77] Lando M, Kagan J A, Shimony Y, Kalisky Y Y, Noter Y, Yogev A, Rotman S R and Rosenwaks S 1997 10th Meeting on Optical Engineering in Israel, Ed. Shladov I and Rotman S R (Jerusalem, Israel) p. 196
[78] Anon 1977 Opt. Laser Technol. 9 207
[79] Guan Z, Zhao C, Li J, He D and Zhang H 2018 Opt. Laser Technol. 107 158
[80] Nakai S 2004 AIP Conference Proceedings 702 3
[81] Eubanks P, Marzocca P, Payziyev S and Radley C 2015 White Pap. Inf. Program NNH15ZOA001L
[82] Masuda T, Iyoda M, Yasumatsu Y, Dottermusch S, Howard I A, Richards B S, Bisson J F and Endo M 2020 Commun. Phys. 3 60
[83] Masuda T, Zhang Y, Ding C, Liu F, Sasaki K, Shen Q and Endo M 2020 J. Appl. Phys. 127 243104
[84] Guan Z, Zhao C M, Yang S H, Wang Y, Ke J Y and Zhang H Y 2017 Laser Phys. Lett. 14 055804
[85] Jones W 1979 Terrestrial Energy Systems Conference (Orlando: American Institute of Aeronautics and Astronautics)
[86] Guilhot D and Ribes-Pleguezuelo P 2019 Instruments 3 50
[87] Kato T, Ito H, Hasegawa K, Ichikawa T, Ikesue A, Mizuno S, Takeda Y, Ichiki A and Motohiro T 2020 Opt. Mater. 110 110481
[88] Motohiro T, Takeda Y, Ito H, Hasegawa K, Ikesue A, Ichikawa T, Higuchi K, Ichiki A, Mizuno S, Ito T, Yamada N, Luitel H N, Kajino T, Terazawa H, Takimoto S and Watanabe K 2017 Jpn. J. Appl. Phys. 56 08MA07
[89] Liang D and Almeida J 2011 Opt. Express 19 26399
[90] Liang D, Almeida J, Vistas C R and Guillot E 2017 Sol. Energy Mater. Sol. Cells 159 435
[91] Xu P, Yang S, Zhao C, Guan Z, Wang H, Zhang Y, Zhang H and He T 2014 Appl. Opt. 53 3941
[92] Yabe T, Ohkubo T, Uchida S, Yoshida K, Nakatsuka M, Funatsu T, Mabuti A, Oyama A, Nakagawa K, Oishi T, Daito K, Behgol B, Nakayama Y, Yoshida M, Motokoshi S, Sato Y and Baasandash C 2007 Appl. Phys. Lett. 90 261120
[93] Liang D, Vistas C R, Tibúrcio B D and Almeida J 2018 Sol. Energy Mater. Sol. Cells 185 75
[94] Kato T, Ito H, Hasegawa K, Ichikawa T, Ikesue A, Mizuno S, Takeda Y, Ichiki A and Motohiro T 2019 Jpn. J. Appl. Phys. 58 062007
[95] Ikesue A, Kamata K and Yoshida K 1995 J. Am. Ceram. Soc. 78 2545
[96] Vistas C R, Liang D, Garcia D, Almeida J, Tibúrcio B D and Guillot E 2020 Optik 207 163795
[97] Meng J X, Li J Q, Shi Z P and Cheah K W 2008 Appl. Phys. Lett. 93 221908
[98] Samuel P, Yanagitani T, Yagi H, Nakao H, Ueda K I and Babu S M 2010 J. Alloys Compd. 507 475
[99] Li Y, Zhou S, Lin H, Hou X and Li W 2010 Opt. Mater. 32 1223
[100] Villars B, Hill E S and Durfee C G 2015 Opt. Lett. 40 3049
[101] Payziyev Sh, Makhmudov Kh and Abdel-Hadi Y A 2018 Optik 156 891
[102] Yagi H, Yanagitani T, Yoshida H, Nakatsuka M and Ueda K 2007 Opt. Laser Technol. 39 1295
[103] Zhao C, Guan Z and Zhang H 2018 Solid State Lasers XXVII: Technology and Devices, Ed. Clarkson W A and Shori R K (San Francisco: SPIE) 10511
[104] Garcia D, Liang D, Vistas C R, Costa H, Catela M, Tibúrcio B D and Almeida J 2022 Energies 15 5292
[105] Wang X, Li W, Tian K, Lewis E, Wang S, Brambilla G, Dong Y, Wu X and Wang P 2019 Ceram. Int. 45 6738
[106] Wang S, Kuang F, Ye Q, Wang Y, Tang M and Ge C 2016 J. Mater. Sci. Technol. 32 583
[107] Wang S M, Kuang F H, Yan Q Z, Ge C C and Qi L H 2011 J. Alloys Compd. 509 2819
[108] Wang S 2010 Environ. Sci. Technol. 44 4816
[109] Wang S M, Kuang F H and Li J 2010 Phase Transit. 83 397
[1] Theoretical study of the enhancement of saturable absorption of Kr under x-ray free-electron laser
Jiaxin Ye(叶佳鑫), Yixuan Yang(杨怡璇), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(5): 053202.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] GeSn (0.524 eV) single-junction thermophotovoltaic cells based on the device transport model
Xin-Miao Zhu(朱鑫淼), Min Cui(崔敏), Yu Wang(汪宇), Tian-Jing Yu(于添景),Jin-Xiang Deng(邓金祥), and Hong-Li Gao(高红丽). Chin. Phys. B, 2022, 31(5): 058801.
[11] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[12] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[13] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[14] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[15] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
No Suggested Reading articles found!