|
|
|
Freestanding La2CuO4/La1.55Sr0.45CuO4 heterostructure membranes with high-TC interface superconductivity |
| Xueshan Cao(曹雪珊)1, Chuanyu Shi(史传宇)1, Yanzhi Wang(王彦智)1, Meng Zhang(张蒙)1, Jirong Sun(孙继荣)1,2, and Yanwu Xie(谢燕武)1,3,† |
1 School of Physics, Zhejiang University, Hangzhou 310027, China; 2 Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract We report the fabrication of freestanding La$_{2}$CuO$_{4}$/La$_{1.55}$Sr$_{0.45}$CuO$_{4}$ (LCO/LSCO) heterostructure membranes, which were fabricated by selectively etching water-soluble Sr$_{3}$Al$_{2}$O$_{6}$ sacrificial layers from pulsed-laser-deposited heterostructures on SrTiO$_{3}$ substrates. Transport measurements reveal that these membranes exhibit superconducting behavior with an onset temperature of approximately 19 K. Comprehensive structural characterization using x-ray diffraction and scanning transmission electron microscopy demonstrates that the membranes retain excellent crystalline quality after release. The superconducting properties remain stable following mild post-annealing treatment under vacuum. This work establishes LCO/LSCO as a promising platform for developing flexible high-temperature superconducting interfaces, opening new possibilities for the development of flexible devices.
|
Received: 29 April 2025
Revised: 25 June 2025
Accepted manuscript online: 28 July 2025
|
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
| |
74.72.-h
|
(Cuprate superconductors)
|
| |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
| |
74.25.F-
|
(Transport properties)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12325402 and 12074334) and the National Key R&D Program of China (Grant No. 2023YFA1406400). |
Corresponding Authors:
Yanwu Xie
E-mail: ywxie@zju.edu.cn
|
Cite this article:
Xueshan Cao(曹雪珊), Chuanyu Shi(史传宇), Yanzhi Wang(王彦智), Meng Zhang(张蒙), Jirong Sun(孙继荣), and Yanwu Xie(谢燕武) Freestanding La2CuO4/La1.55Sr0.45CuO4 heterostructure membranes with high-TC interface superconductivity 2025 Chin. Phys. B 34 107301
|
[1] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 [2] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285 [3] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782 [4] Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z and Božović I 2013 Nat. Mater. 12 877 [5] Den J, Ren T, Ju L, Zhang H, Sun J, Shen B and Xie Y 2020 Sci. China Mater. 63 128 [6] Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J and Xie Y 2021 Phys. Rev. Lett. 126 026802 [7] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H and Bhattacharya A 2021 Science 371 716 [8] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J and Xie Y 2021 Science 372 721 [9] Ko H, Takei K, Kapadia R, Chuang S, Fang H, Leu P W, Ganapathi K, Plis E, Kim H S, Chen S Y, Madsen M, Ford A C, Chueh Y L, Krishna S, Salahuddin S and Javey A 2010 Nature 468 286 [10] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [12] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 [13] Osada M and Sasaki T 2012 Adv. Mater. 24 210 [14] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 [15] Butler S Z, Hollen S M, Cao L, et al. 2013 ACS Nano 7 2898 [16] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y and Hwang H Y 2016 Nat. Mater. 15 1255 [17] Zhang J, Lin T, Wang A, Wang X, He Q, Ye H, Lu J, Wang Q, Liang Z, Jin F, Chen S, Fan M, Guo E J, Zhang Q, Gu L, Luo Z, Si L, Wu W and Wang L 2024 Science 383 388 [18] Hong S S, Yu J H, Lu D, Marshall A F, Hikita Y, Cui Y and Hwang H Y 2017 Sci. Adv. 3 eaao5173 [19] Huang J K, Wan Y, Shi J, Zhang J, Wang Z, Wang W, Yang N, Liu Y, Lin C H, Guan X, Hu L, Yang Z L, Huang B C, Chiu Y P, Yang J, Tung V, Wang D, Kalantar-Zadeh K, Wu T, Zu X, Qiao L, Li L J and Li S 2022 Nature 605 262 [20] Lu D, Crossley S, Xu R, Hikita Y and Hwang H Y 2019 Nano Lett. 19 3999 [21] Peng B, Peng R C, Zhang Y Q, Dong G, Zhou Z, Zhou Y, Li T, Liu Z, Luo Z, Wang S, Xia Y, Qiu R, Cheng X, Xue F, Hu Z, Ren W, Ye Z G, Chen L Q, Shan Z, Min T and Liu M 2020 Sci. Adv. 6 eaba5847 [22] Chen Z, Wang B Y, Goodge B H, Lu D, Hong S S, Li D, Kourkoutis L F, Hikita Y and Hwang H Y 2019 Phys. Rev. Mater. 3 060801(R) [23] Zhang M, Chen Z, Mao B, Li Q, Bo H, Ren T, He P, Liu Z and Xie Y 2018 Phys. Rev. Mater. 2 065002 [24] Chen Z, Chen X, Mao B, Li Q, Zhang M, Bo H, Liu Z, Tian H, Zhang Z and Xie Y 2018 Adv. Mater. Interface 5 1801216 [25] Locquet J P, Perret J, Fompeyrine J, Mächler E, Seo J W and Van Tendeloo G 1998 Nature 394 453 [26] Sato H, Tsukada A, Naito M and Matsuda A 2000 Phys. Rev. B 61 12447 [27] Johnson M A, Burquest J F, Larsen M H and Prill N 2018 Thin Solid Films 649 167 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|