Enhanced thermoelectric properties of the topological phase of monolayer HfC
Wenlai Mu(母文来)1, Nisar Muhammad(穆罕默德·尼萨)2, Baojuan Dong(董宝娟)3,4,5, Nguyen Tuan Hung(阮俊兴)6,†, Huaihong Guo(郭怀红)7,‡, Riichiro Saito(斋藤理一郎)8, Weijiang Gong(公卫江)9, Teng Yang(杨腾)1,3,§, and Zhidong Zhang(张志东)1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; 2 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Liaoning Academy of Materials, Shenyang 110167, China; 4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 6 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan; 7 College of Sciences, Liaoning Petrochemical University, Fushun 113001, China; 8 Department of Physics, Tohoku University, Sendai 980-8578, Japan; 9 College of Sciences, Northeastern University, Shenyang 110819, China
Abstract Thermoelectric properties of a topological insulator, monolayer HfC, are calculated using first-principles calculation, which accounts for the two contributions from edge and bulk states. By applying strain up to 8% along the axis, the monolayer HfC shows the topological phase while it is in a non-topological state without strain. The figure of merit, , for the topological phase becomes two-ordered magnitude larger ( 2) because of larger electric conductivity than that of the non-topological phase due to edge current. The total Seebeck coefficient , and have maximum values when the chemical potential is located at the highest energy of the edge state. The peak of comes from the fact that the product of divergent and quickly-decreasing electric conductivity above the highest energy of the edge state. We further optimize and by changing the sample size and temperature.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52031014), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0460000), and the National Key Research and Development Program of China (Grant No. 2022YFA1203900). Baojuan Dong acknowledges the National Natural Science Foundation of China (Grant Nos. 12004228 and U21A6004). Riichiro Saito acknowledges a JSPS KAKENHI (Grant No. JP22H00283), Nguyen Tuan Hung acknowledges financial support from the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University. Weijiang Gong acknowledges financial support from the National Natural Science Foundation of China (Grant No. 51702146).
Corresponding Authors:
Nguyen Tuan Hung, Huaihong Guo, Teng Yang
E-mail: nguyen.tuan.hung.e4@tohoku.ac.jp;hhguo@alum.imr.ac.cn;yanghaiteng@msn.com
Cite this article:
Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东) Enhanced thermoelectric properties of the topological phase of monolayer HfC 2025 Chin. Phys. B 34 057301
[1] Goldsmid H J et al. 2010 Introduction of Thermoelectricity (Heidelberg, Germany: CRC press) [2] Rowe D M E 1995 CRC Handbook of Termoelectrics (Springer) [3] Pei Y, Shi X, LaLonde A,Wang H, Chen L and Snyder G J 2011 Nature 473 66 [4] Zhu H, Zhang B, Wang G, Peng K, Yan Y, Zhang Q, Han X, Wang G, Lu X and Zhou X 2019 J. Mater. Chem. A 7 11690 [5] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602 [6] Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426 [7] Gong Y, Zhang S, Hou Y, Li S, Wang C, Xiong W, Zhang Q, Miao X, Liu J, Cao Y, Li D, Chen G and Tang G 2023 ACS Nano 17 801 [8] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801 [9] Guo H H, Yang T, Tao T and Zhang Z D 2014 Chin. Phys. B 23 017201 [10] Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301 [11] Qi X L and Zhang S C 2010 Phys. Today 63 33 [12] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [13] Sun Y, Chen X Q, Yunoki S, Li D and Li Y 2010 Phys. Rev. Lett. 105 216406 [14] Dong Q X, Ruan B B, Huang Y F, Wang Y Y, Zhang L B, Bai J L, Liu Q Y, Cheng JW, Ren Z A and Chen G F 2023 Chin. Phys. B 32 066501 [15] Xu Y, Gan Z and Zhang S C 2014 Phys. Rev. Lett. 112 226801 [16] Hasdeo E H, Krisna L, Hanna M Y, Gunara B E, Hung N T and Nugraha A R T 2019 J. Appl. Phys. 126 036602 [17] Gaffar M, Wella S A and Hasdeo E H 2021 Phys. Rev. B 104 205105 [18] Takahashi R and Murakami S 2010 Phys. Rev. B 81 161302(R) [19] Zhang R W, Ji W X, Zhang C W, Li S S, Li P and Wang P J 2016 J. Mater. Chem. C 4 2088 [20] Zhou L J, Shao B, Shi W J, Sun Y, Felser C, Yan B H and Frauenheim T 2016 2D Mater. 3 035022 [21] Bardeen J and Shockley W 1950 Phys. Rev. 80 72 [22] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [24] Blöchl P 1994 Phys. Rev. B 50 17953 [25] Wang S K, Pratama F R, Ukhtary M S and Saito R 2020 Phys. Rev. B 101 081414(R) [26] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [27] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67 [28] Gooth J, Gluschke J G, Zierold R, Leijnse M, Linke H and Nielsch K 2015 Semicond. Sci. Technol. 30 015015 [29] Beleznay F, Bogár F and Ladik J 2003 J. Chem. Phys. 119 5690 [30] Hung N T, Nugraha A R T and Saito R 2018 Phys. Rev. Appl. 9 024019 [31] Hung N T, Adhidewata J M, Nugraha A R T and Saito R 2022 Phys. Rev. B 105 115142 [32] Muller G, Weiss D, Khaetskii A, Vonklitzing K, Koch S, Nickel H, Schlapp W and Losch R 1992 Phys. Rev. B 45 3932 [33] Daumer V, Golombek I, Gbordzoe M, Novik E, Hock V, Becker C, Buhmann H and Molenkamp L 2003 Appl. Phys. Lett. 83 1376 [34] Wang T H and Jeng H T 2018 ACS Appl. Energy Mater. 1 5646 [35] Ahmad M, Agarwal K and Mehta B 2020 J. Appl. Phys. 128 035108 [36] Matsushita S Y, Huynh K K, Yoshino H, Tu N H, Tanabe Y and Tanigaki K 2017 Phys. Rev. Mater. 1 054202 [37] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [38] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [39] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.