Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057301    DOI: 10.1088/1674-1056/adbd17
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced thermoelectric properties of the topological phase of monolayer HfC

Wenlai Mu(母文来)1, Nisar Muhammad(穆罕默德·尼萨)2, Baojuan Dong(董宝娟)3,4,5, Nguyen Tuan Hung(阮俊兴)6,†, Huaihong Guo(郭怀红)7,‡, Riichiro Saito(斋藤理一郎)8, Weijiang Gong(公卫江)9, Teng Yang(杨腾)1,3,§, and Zhidong Zhang(张志东)1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
2 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Liaoning Academy of Materials, Shenyang 110167, China;
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
6 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan;
7 College of Sciences, Liaoning Petrochemical University, Fushun 113001, China;
8 Department of Physics, Tohoku University, Sendai 980-8578, Japan;
9 College of Sciences, Northeastern University, Shenyang 110819, China
Abstract  Thermoelectric properties of a topological insulator, monolayer HfC, are calculated using first-principles calculation, which accounts for the two contributions from edge and bulk states. By applying strain up to 8% along the a axis, the monolayer HfC shows the topological phase while it is in a non-topological state without strain. The figure of merit, ZT, for the topological phase becomes two-ordered magnitude larger (ZT 2) because of larger electric conductivity than that of the non-topological phase due to edge current. The total Seebeck coefficient S, and ZT have maximum values when the chemical potential is located at the highest energy of the edge state. The peak of ZT comes from the fact that the product of divergent S and quickly-decreasing electric conductivity above the highest energy of the edge state. We further optimize S and ZT by changing the sample size and temperature.
Keywords:  anomalous Seebeck effect      ab initio calculations      edge state      hafnium carbide      thermoelectric      Z2 topological insulator  
Received:  10 January 2025      Revised:  03 March 2025      Accepted manuscript online:  06 March 2025
PACS:  73.50.Lw (Thermoelectric effects)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52031014), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0460000), and the National Key Research and Development Program of China (Grant No. 2022YFA1203900). Baojuan Dong acknowledges the National Natural Science Foundation of China (Grant Nos. 12004228 and U21A6004). Riichiro Saito acknowledges a JSPS KAKENHI (Grant No. JP22H00283), Nguyen Tuan Hung acknowledges financial support from the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University. Weijiang Gong acknowledges financial support from the National Natural Science Foundation of China (Grant No. 51702146).
Corresponding Authors:  Nguyen Tuan Hung, Huaihong Guo, Teng Yang     E-mail:  nguyen.tuan.hung.e4@tohoku.ac.jp;hhguo@alum.imr.ac.cn;yanghaiteng@msn.com

Cite this article: 

Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东) Enhanced thermoelectric properties of the topological phase of monolayer HfC 2025 Chin. Phys. B 34 057301

[1] Goldsmid H J et al. 2010 Introduction of Thermoelectricity (Heidelberg, Germany: CRC press)
[2] Rowe D M E 1995 CRC Handbook of Termoelectrics (Springer)
[3] Pei Y, Shi X, LaLonde A,Wang H, Chen L and Snyder G J 2011 Nature 473 66
[4] Zhu H, Zhang B, Wang G, Peng K, Yan Y, Zhang Q, Han X, Wang G, Lu X and Zhou X 2019 J. Mater. Chem. A 7 11690
[5] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602
[6] Hung N T, Nugraha A R T, Hasdeo E H, Dresselhaus M S and Saito R 2015 Phys. Rev. B 92 165426
[7] Gong Y, Zhang S, Hou Y, Li S, Wang C, Xiong W, Zhang Q, Miao X, Liu J, Cao Y, Li D, Chen G and Tang G 2023 ACS Nano 17 801
[8] Tao P, Guo H H, Yang T and Zhang Z D 2014 Chin. Phys. B 23 106801
[9] Guo H H, Yang T, Tao T and Zhang Z D 2014 Chin. Phys. B 23 017201
[10] Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301
[11] Qi X L and Zhang S C 2010 Phys. Today 63 33
[12] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[13] Sun Y, Chen X Q, Yunoki S, Li D and Li Y 2010 Phys. Rev. Lett. 105 216406
[14] Dong Q X, Ruan B B, Huang Y F, Wang Y Y, Zhang L B, Bai J L, Liu Q Y, Cheng JW, Ren Z A and Chen G F 2023 Chin. Phys. B 32 066501
[15] Xu Y, Gan Z and Zhang S C 2014 Phys. Rev. Lett. 112 226801
[16] Hasdeo E H, Krisna L, Hanna M Y, Gunara B E, Hung N T and Nugraha A R T 2019 J. Appl. Phys. 126 036602
[17] Gaffar M, Wella S A and Hasdeo E H 2021 Phys. Rev. B 104 205105
[18] Takahashi R and Murakami S 2010 Phys. Rev. B 81 161302(R)
[19] Zhang R W, Ji W X, Zhang C W, Li S S, Li P and Wang P J 2016 J. Mater. Chem. C 4 2088
[20] Zhou L J, Shao B, Shi W J, Sun Y, Felser C, Yan B H and Frauenheim T 2016 2D Mater. 3 035022
[21] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[22] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P 1994 Phys. Rev. B 50 17953
[25] Wang S K, Pratama F R, Ukhtary M S and Saito R 2020 Phys. Rev. B 101 081414(R)
[26] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[27] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[28] Gooth J, Gluschke J G, Zierold R, Leijnse M, Linke H and Nielsch K 2015 Semicond. Sci. Technol. 30 015015
[29] Beleznay F, Bogár F and Ladik J 2003 J. Chem. Phys. 119 5690
[30] Hung N T, Nugraha A R T and Saito R 2018 Phys. Rev. Appl. 9 024019
[31] Hung N T, Adhidewata J M, Nugraha A R T and Saito R 2022 Phys. Rev. B 105 115142
[32] Muller G, Weiss D, Khaetskii A, Vonklitzing K, Koch S, Nickel H, Schlapp W and Losch R 1992 Phys. Rev. B 45 3932
[33] Daumer V, Golombek I, Gbordzoe M, Novik E, Hock V, Becker C, Buhmann H and Molenkamp L 2003 Appl. Phys. Lett. 83 1376
[34] Wang T H and Jeng H T 2018 ACS Appl. Energy Mater. 1 5646
[35] Ahmad M, Agarwal K and Mehta B 2020 J. Appl. Phys. 128 035108
[36] Matsushita S Y, Huynh K K, Yoshino H, Tu N H, Tanabe Y and Tanigaki K 2017 Phys. Rev. Mater. 1 054202
[37] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[38] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[39] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[1] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[2] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[3] Electronic structure and carrier mobility of BSb nanotubes
Lantian Xue(薛岚天), Chennan Song(宋晨楠), Miaomiao Jian(见苗苗), Qiang Xu(许强), Yuhao Fu(付钰豪), Pengyue Gao(高朋越), and Yu Xie(谢禹). Chin. Phys. B, 2025, 34(3): 037304.
[4] Topological rainbow trapping of sound waves in synthesized three-dimensional space for square lattice
Jie-Yu Lu(卢杰煜), Shi-Feng Li(李石峰), Xin Li(李鑫), Xin-Ye Zou(邹欣晔), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2025, 34(2): 024302.
[5] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[6] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[7] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[8] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[9] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[10] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[11] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[12] Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number
Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(12): 127103.
[13] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[14] Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(8): 087102.
[15] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
No Suggested Reading articles found!