|
|
|
Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain |
| Yi Zhu(朱怡)2,3, Hao Liu(刘昊)2,3, Huilin Lai(赖辉琳)2,3, Zhenghua An(安正华)2,3, Yinyan Zhu(朱银燕)1,2,4,5,§, Lifeng Yin(殷立峰)1,2,3,4,‡, and Jian Shen(沈健)1,2,3,4,5,6,† |
1 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; 2 State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; 3 Department of Physics, Fudan University, Shanghai 200433, China; 4 Zhangjiang Fudan International Innovation Center, Shanghai 201210, China; 5 Hefei National Laboratory, Hefei 230088, China; 6 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
|
|
Abstract Epitaxial strain is an effective way to control thermoelectricity of a thin film system. In this work, we investigate strain-dependent thermoelectricity of [(SrTiO$_{3}$)$_{3}$/(SrTi$_{0.8}$Nb$_{0.2}$O$_{3}$)$_{3}$]$_{10 }$ superlattices grown on different substrates, including $-0.96$% on (LaAlO$_{3}$)$_{0.3}$(SrAl$_{0.5}$Ta$_{0.5}$O$_{3}$)$_{0.7}$(001) (LSAT), 0% on SrTiO$_{3}$(001) (STO), $+0.99$% on DyScO$_{3}$(110) (DSO) and $+1.64$% on GdScO$_{3}$(110) (GSO), respectively. Our results show that the highest room-temperature thermoelectricity is achieved when the STO-based superlattice is grown on the DSO substrate with $+0.99$% tensile strain. This is attributed to the high permittivity and low dielectric loss arising from the ferroelectric domain and electron-phonon coupling, which boost the power factor (PF) to 10.5 mW$\cdot$m$^{-1}\cdot$K$^{-2}$ at 300 K.
|
Received: 04 May 2025
Revised: 06 June 2025
Accepted manuscript online: 09 June 2025
|
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
| |
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
| Fund: We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and help during experiments. This work is supported by the National Key Research & Development Program of China (Grant No. 2022YFA1403300), the Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300103), the National Natural Science Foundation of China (Grant Nos. 11991060, 11427902, 12074075, 62171136, and 12474165), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the Shanghai Municipal Natural Science Foundation (Grant Nos. 22ZR1407400, 22ZR1408100, and 23ZR1407200). |
Corresponding Authors:
Jian Shen, Lifeng Yin, Yinyan Zhu
E-mail: shenj5494@fudan.edu.cn;lifengyin@fudan.edu.cn;zhuyinyan@fudan.edu.cn
|
Cite this article:
Yi Zhu(朱怡), Hao Liu(刘昊), Huilin Lai(赖辉琳), Zhenghua An(安正华), Yinyan Zhu(朱银燕), Lifeng Yin(殷立峰), and Jian Shen(沈健) Enhancing room-temperature thermoelectricity of SrTiO3 based superlattices via epitaxial strain 2025 Chin. Phys. B 34 097305
|
[1] DiSalvo F J 1999 Science 285 703 [2] Vining C B 2009 Nat. Mater. 8 83 [3] Zhang Q, Deng K, Wilkens L, Reith H and Nielsch K 2022 Nature Electronics 5 333 [4] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 [5] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884 [6] Yang L, Chen Z G, Dargusch M S and Zou J 2018 Advanced Energy Materials 8 1701797 [7] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 [8] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H and Koumoto K 2007 Nat. Mater. 6 129 [9] Abutaha A I, Kumar S R S, Li K, Dehkordi A M, Tritt T M and Alshareef H N 2015 Chem. Mater. 27 2165 [10] Zhang Y Q, Feng B, Hayashi H, Chang C P, Sheu Y M, Tanaka I, Ikuhara Y and Ohta H 2018 Nat. Commun. 9 2224 [11] Mune Y, Ohta H, Koumoto K, Mizoguchi T and Ikuhara Y 2007 Appl. Phys. Lett. 91 192105 [12] Zhu Y, Wang W, Liang B, Liu W, Zhou T, Meng B, Liu H, Gao W, Yang Y, Niu C, Zheng C, An Z, Wu S, Liu W, Zhang Y, Yuan C, Zhu Y, Yin L and Shen J 2025 J. Mat. Chem. C 13 2279 [13] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601 [14] Pei Y, Shi X, LaLonde A,Wang H, Chen L and Snyder G J 2011 Nature 473 66 [15] Wu Y, Chen Z, Nan P, Xiong F, Lin S, Zhang X, Chen Y, Chen L, Ge B and Pei Y 2019 Joule 3 1276 [16] Lou X, Li S, Chen X, Zhang Q, Deng H, Zhang J, Li D, Zhang X, Zhang Y, Zeng H and Tang G 2021 ACS Nano 15 8204 [17] Guo S D 2016 J. Mat. Chem. C 4 9366 [18] Fumega A O and Pardo V 2017 J. Phys.: Condens. Matter 29 065501 [19] Müller K A and Burkard H 1979 Phys. Rev. B 19 3593 [20] Neville R C, Hoeneisen B and Mead C A 1972 J. Appl. Phys. 43 2124 [21] Servoin J L, Luspin Y and Gervais F 1980 Phys. Rev. B 22 5501 [22] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J and Schlom D G 2004 Nature 430 758 [23] Pertsev N A, Tagantsev A K and Setter N 2000 Phys. Rev. B 61 R825 [24] Li Y L, Choudhury S, Haeni J H, Biegalski M D, Vasudevarao A, Sharan A, Ma H Z, Levy J, Gopalan V, Trolier-McKinstry S, Schlom D G, Jia Q X and Chen L Q 2006 Phys. Rev. B 73 184112 [25] Bauer G E W, Iguchi R and Uchida K I 2021 Phys. Rev. Lett. 126 187603 [26] Tang P, Iguchi R, Uchida K I and Bauer G E W 2022 Phys. Rev. Lett. 128 047601 [27] Ye B, Miao T, Zhu Y, Huang H, Yang Y, Shuai M, Zhu Z, Guo H,Wang W, Zhu Y, Yin L and Shen J 2021 Rev. Sci. Instrum. 92 113906 [28] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M and Koinuma H 1994 Science 266 1540 [29] Kleibeuker J, Kuiper B, Harkema S, Koster G, Rijnders G, Tinnemans P, Vlieg E, Rossen P, Portale G, Ravichandran J and Ramesh R 2012 Phys. Rev. B 85 165413 [30] Zhang S, Deliyore-Ramírez J, Deng S, Nair B, Pesquera D, Jing Q, Vickers M E, Crossley S, Ghidini M, Guzmán-Verri G G, Moya X and Mathur N D 2024 Nat. Mater. 23 639 [31] Vendik O G, Zubko S P and Nikol’ski M A 1999 Technical Physics 44 349 [32] Biegalski M D 2006 Epitaxialy Strained Strontium Titanate (PhD thesis) (The Pennsylvania State Univ.) [33] Gevorgian S S, Martinsson T, Linner P L J and Kollberg E L 1996 IEEE Trans. Microwave Theory Tech. 44 896 [34] Zou D F, Liu Y Y, Xie S H, Lin J G and Li J Y 2013 Chem. Phys. Lett. 586 159 [35] Jalan B, Allen S J, Beltz G E, Moetakef P and Stemmer S 2011 Appl. Phys. Lett. 98 132102 [36] Verma A, Kajdos A P, Cain T A, Stemmer S and Jena D 2014 Phys. Rev. Lett. 112 216601 [37] Himmetoglu B, Janotti A, Peelaers H, Alkauskas A and Van de Walle C G 2014 Phys. Rev. B 90 241204 [38] Janotti A, Steiauf D and Van deWalle C G 2011 Phys. Rev. B 84 201304 [39] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106 [40] Amin B, Singh N, Tritt T M, Alshareef H N and Schwingenschlögl U 2013 Appl. Phys. Lett. 103 031907 [41] Hung N T, Hasdeo E H, Nugraha A R T, Dresselhaus M S and Saito R 2016 Phys. Rev. Lett. 117 036602 [42] Zhang Y, Feng B, Hayashi H, Tohei T, Tanaka I, Ikuhara Y and Ohta H 2017 J. Appl. Phys. 121 185102 [43] Blöchl P E 1994 Phys. Rev. B 50 17953 [44] Lee J H, Fang L, Vlahos E, et al. 2010 Nature 466 954 [45] Nuzhnyy D, Petzelt J, Kamba S, Kužel P, Kadlec C, Bovtun V, Kempa M, Schubert J, Brooks C M and Schlom D 2009 Appl. Phys. Lett. 95 232902 [46] Biegalski M D, Vlahos E, Sheng G, Li Y L, Bernhagen M, Reiche P, Uecker R, Streiffer S K, Chen L Q, Gopalan V, Schlom D G and Trolier-McKinstry S 2009 Phys. Rev. B 79 224117 [47] Vasudevarao A, Denev S, Biegalski M D, Li Y, Chen L Q, Trolier- McKinstry S, Schlom D G and Gopalan V 2008 Appl. Phys. Lett. 92 192902 [48] Fumega A O and Pardo V 2017 J. Phys.: Condens. Matter 29 065501 [49] Huang Z, Liu Z Q, Yang M, Zeng S W, Annadi A, Lü W M, Tan X L, Chen P F, Sun L, Renshaw Wang X, Zhao Y L, Li C J, Zhou J, Han K, Wu W B, Feng Y P, Coey J M D, Venkatesan T and Ariando 2014 Phys. Rev. B 90 125156 [50] Xu R J, Huang JW, Barnard E S, Hong S S, Singh P,Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S and Hwang H Y 2020 Nat. Commun. 11 3141 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|