| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Realize high thermoelectric performance in both zone-melted ingots and powder-metallurgy bulks of Bi0.46Sb1.54Te3 |
| Kai-Wen Zhao(赵凯雯), Meng-Yao Li(李梦瑶)†, Ying-Jiu Zhang(张迎九), and Hong-Zhang Song(宋红章)‡ |
| Key Laboratory of Materials Physics of the Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China |
|
|
|
|
Abstract Bi(Sb)$_{2}$Te(Se)$_{3}$ alloys, as the only commercial thermoelectric materials, have been applied widely in cooling fields. While, the current energy conversion efficiency (dominated by the dimensionless ZT) of commercial products is still lower and cannot meet the market demand. In this paper, high thermoelectric performance at room temperature in both zone-melted (ZM) Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ ingots and powder-metallurgy (PM) Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ blocks with a large size was realized successfully by optimizing their preparation process. The peak ZT values of ZM and PM p-type Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ alloys reached 1.26 and 1.45, respectively. They are higher than those of all the n-type or p-type Bi$_{2}$Te$_{3}$-based products in current commercial applications. In particular, their production process of large size p-type Bi$_{0.46}$Sb$_{1.54}$Te$_{3}$ alloys could be directly industrialized.
|
Received: 19 March 2025
Revised: 25 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
| |
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFE0105200), the China Postdoctoral Science Foundation (Grant No. 2023M743151), and the Natural Science Foundation of Henan Province, China (Grant No. 242300420304). |
Corresponding Authors:
Meng-Yao Li, Meng-Yao Li
E-mail: limengyaorz@zzu.edu.cn;hzsong@zzu.edu.cn
|
Cite this article:
Kai-Wen Zhao(赵凯雯), Meng-Yao Li(李梦瑶), Ying-Jiu Zhang(张迎九), and Hong-Zhang Song(宋红章) Realize high thermoelectric performance in both zone-melted ingots and powder-metallurgy bulks of Bi0.46Sb1.54Te3 2025 Chin. Phys. B 34 107203
|
[1] Dai S, Lin Z, Hu H, Wang Y and Zeng L 2024 Appl. Phys. Rev. 11 041319 [2] Li X, Zhang X, Xu J, Duan Z, Xu Y, Zhang X, Zhang L, Wang Y and Chu P K 2024 Adv. Sci. 11 2305467 [3] Qin Y, Qin B, Hong T, Zhang X, Wang D, Liu D, Wang Z Y, Su L, Wang S and Gao X 2024 Science 383 1204 [4] ChenWY, Shi X L, Zou J and Chen Z G 2022 Mater. Sci. Eng. R: Rep. 151 100700 [5] Deng T, Gao Z, Li Z, Qiu P, Li Z, Yuan X, Ming C, Wei T R, Chen L and Shi X 2024 Science 386 1112 [6] Hu H, Ju Y, Yu J, Wang Z, Pei J, Thong H C, Li J W, Cai B, Liu F and Han Z 2024 Nat. Mater. 23 527 [7] Tian Q, Zhang W, Qin Z and Qin G 2021 Nanoscale 13 18032 [8] Zhou Z, Huang Y,Wei B, Yang Y, Yu D, Zheng Y, He D, ZhangW, Zou M and Lan J L 2023 Nat. Commun. 14 2410 [9] Lei J, Wuliji H, Ren Q, Hao X, Dong H, Chen H, Wei T R, Zhang J, Qiu P and Zhao K 2024 Energy & Environmental Science 17 1416 [10] Zhu Y, Wan B, Shen W, Zhang Z, Fang C, Wang Q, Chen L, Zhang Y and Jia X 2023 Appl. Phys. Lett. 122 133903 [11] Tian Q, Li P, Wei J, Xing Z, Qin G and Qin Z 2023 Phys. Rev. B 108 115130 [12] Liu S, Bai S, Wen Y, Lou J, Jiang Y, Zhu Y, Liu D, Li Y, Shi H and Liu S 2025 Science 387 202 [13] Shi X, Song S, Gao G and Ren Z 2024 Science 384 757 [14] Wu B, Zhao X, Jia M, Yang D, Liu Y, Song H, Wang D, Cabot A and Li M 2024 Appl. Phys. Lett. 125 223901 [15] Zhu Z, Zhang Y, Song H and Li X J 2018 Appl. Phys. A 124 871 [16] Zhu Z, Zhang Y, Song H and Li X J 2018 Appl. Phys. A 124 747 [17] Yang S, Ming H, Li D, Chen T, Li S, Zhang J, Xin H and Qin X 2023 Chem. Eng. J. 455 140923 [18] Xu Y, Xia S, Zhang Y, Song H, Liu S and Hao H 2024 Appl. Phys. A 130 203 [19] Ma R, Yang D, Li X, Song H and Zhang Y 2022 Appl. Phys. A 128 1134 [20] Ma R, Yang D, Tian Z, Song H and Zhang Y 2022 Appl. Phys. A 128 531 [21] Zhu Z, Zhang Y, Song H and Li X J 2019 Appl. Phys. A 125 572 [22] Cao R, Li E, Hu Q, Zhu Z, Zhang Y, Li X, Hu X and Song H 2018 Appl. Phys. A 124 669 [23] Xue T,Wei P, Liu C, Li L, ZhuW, Nie X and Zhao W 2024 Chin. Phys. B 33 087403 [24] Ren K, Huo W, Chen S, Cheng Y, Wang B and Zhang G 2024 Chin. Phys. B 33 057202 [25] He Q, Yang D, Zhang W and Song H 2024 Mod. Phys. Lett. B 38 2450224 [26] He Q, ZhangW, Liu X and Song H 2022 Mod. Phys. Lett. B 36 2250157 [27] Zhang Y, Fan M M, Ruan C C, Zhang Y W, Li X J and Song H Z 2020 Mod. Phys. Lett. B 34 2050019 [28] Li S, Wang L, Ma D, Jiang Y, Zhang J and Guo K 2024 ACS Appl. Mater. Interfaces 16 3586 [29] Li S, Zhao W, Cheng Y, Chen L, Xu M, Guo K and Pan F 2022 ACS Appl. Mater. Interfaces 15 1167 [30] Liu Q, Lu Y, Zhu H, Qian X, Yang R and Zhao H 2024 Sci. Bull. 69 295 [31] Yen W T, Wang K K and Wu H J 2023 Materials Today Physics 34 101065 [32] Zhang X, Wang Z, Hou Y, Liu Y, Hu L, Xie W, Shi J, Wei J and Xiong R 2024 Chem. Eng. J. 481 148530 [33] Zheng Y, Tan X Y, Wan X, Cheng X, Liu Z and Yan Q 2019 ACS Appl. Energy Mater. 3 2078 [34] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884 [35] Pan Y, Wei T R, Cao Q and Li J F 2015 Mater. Sci. Eng. B 197 75 [36] Zhang W, Li M, Jia M, Fan Y, Zhang Y, Tian Z, Li X, Liu Y, Yang D, Song H and Cabot A 2024 J. Eur. Ceram. Soc. 44 5088 [37] Cao R, Zhu Z, Li X J, Hu X and Song H 2019 Appl. Phys. A 125 126 [38] Cao R, Liu X, Tian Z, Zhang Y, Li X J and Song H 2022 Appl. Phys. A 128 1130 [39] Xu Z, Hu L, Ying P, Zhao X and Zhu T 2015 Acta Materialia 84 385 [40] Xiong C, Shi F, Wang H, Cai J, Zhao S, Tan X, Hu H, Liu G, Noudem J G and Jiang J 2021 ACS Appl. Mater. Interfaces 13 15429 [41] ZhangW, Liu X, Tian Z, Zhang Y, Li X J and Song H 2023 J. Electron. Mater. 52 6682 [42] Zhang W, Li M, Zhang Y, Tian Z, Li X J and Song H 2024 J. Alloys Compd. 993 174672 [43] Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H and Yin Z Z 2010 Energy Environm. Sci. 3 1519 [44] Pei J, Cai B, Zhuang H L and Li J F 2020 Nat. Sci. Rev. 7 1856 [45] Huang H, Li J, Chen S, Zhang Z, Yan Y, Su X and Tang X 2020 J. Solid State Chem. 288 121433 [46] Bies W, Radtke R, Ehrenreich H and Runge E 2002 Phys. Rev. B 65 085208 [47] Yang S, Ming H, Li D, Chen T, Li S, Zhang J, Xin H and Qin X 2023 Chem. Eng. J. 455 140923 [48] Li S, Wang L, Ma D, Jiang Y, Zhang J and Guo K 2024 ACS Appl. Mater. Interfaces 16 3586 [49] Ahmad A, Zhu B, Wang Z, Gui Z, Wang W, Wang T, Yu Y, Huang L and He J 2024 Energy Environm. Sci. 17 695 [50] Liu X, Cao R, Zhang Y, Tian Z, Li X J and Song H 2022 J. Alloys Compd. 899 163296 [51] Mehta R J, Zhang Y, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T and Ramanath G 2012 Nat. Mater. 11 233 [52] Li J, Tan Q, Li J F, Liu D W, Li F, Li Z Y, Zou M and Wang K 2013 Adv. Funct. Mater. 23 4317 [53] Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211 [54] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S and Lee Y H 2015 Science 348 109 [55] Hong M, Chen Z G, Yang L and Zou J 2016 Nano Energy 20 144 [56] Yu Y, He D S, Zhang S, Cojocaru-Mirédin O, Schwarz T, Stoffers A, Wang X Y, Zheng S, Zhu B and Scheu C 2017 Nano Energy 37 203 [57] Deng R, Su X, Zheng Z, Liu W, Yan Y, Zhang Q, Dravid V P, Uher C, Kanatzidis M G and Tang X 2018 Sci. Adv. 4 eaar5606 [58] Liu Y, Zhang Y, Ortega S, Ibáñez M, Lim K H, Grau-Carbonell A, Martí-Sánchez S, Ng K M, Arbiol J and Kovalenko M V 2018 Nano Lett. 18 2557 [59] Pan Y, Qiu Y, Witting I, Zhang L, Fu C, Li J W, Huang Y, Sun F H, He J and Snyder G J 2019 Energy Environm. Sci. 12 624 [60] Li C, Ma S, Wei P, Zhu W, Nie X, Sang X, Sun Z, Zhang Q and Zhao W 2020 Energy Environm. Sci. 13 535 [61] Zhuang H L, Pei J, Cai B, Dong J, Hu H, Sun F H, Pan Y, Snyder G J and Li J F 2021 Adv. Funct. Mater. 31 2009681 [62] Wang X, Cheng J, Yin L, Zhang Z, Wang X, Sui J, Liu X, Mao J, Cao F and Zhang Q 2022 Adv. Funct. Mater.s 32 2200307 [63] Sun Y, Wu H, Dong X, Xie L, Liu Z, Liu R, Zhang Q, Cai W, Guo F and Sui J 2023 Adv. Funct. Mater. 33 2301423 [64] Shi Y C, Yang J, Wang Y, Li Z G, Zhong T Y, Ge Z H, Feng J and He J 2024 Energy Environm. Sci. 17 2326 [65] Zhuang H L, Cai B, Pan Y, Su B, Jiang Y, Pei J, Liu F, Hu H, Yu J and Li J W 2024 Nat. Sci. Rev. 11 nwae329 [66] Xu S, Horta S, Lawal A, Maji K, Lorion M and Ibáñez M 2025 Science 387 845 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|