Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107202    DOI: 10.1088/1674-1056/addce4
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator

Tengfei Xie(谢腾飞)1 and Huajun Qin(秦华军)1,2,†
1 School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract  Spin waves in van der Waals magnets hold promise for magnonic devices and circuits down to the two-dimensional limit. However, their short decay lengths pose challenges for practical applications. Here, we report on a material platform consisting of a van der Waals magnet, Fe$_5$GeTe$_2$ (FGT), and a ferrimagnetic insulator of yttrium iron garnet, Y$_3$Fe$_5$O$_{12}$ (YIG), which supports the low-loss propagation of spin waves. Using broadband spin-wave spectroscopy, we observed an increase in spin-wave group velocity with decreasing temperature, which peaks at 30 K in the YIG and FGT/YIG films. This effect is ascribed to a change in the saturation magnetization of YIG and FGT/YIG at low temperature, resulting in a change in the spin-wave dispersion relations. Using micromagnetic simulations, we further investigated spin-wave propagation in an FGT/YIG bilayer and revealed a longer spin-wave decay length in the bilayer than in a single FGT layer, which is due to the lower effective damping in the bilayer. Moreover, asymmetric spin-wave dispersion, induced by a chiral dipolar interaction between the YIG and FGT layers, enables nonreciprocal control of spin-wave propagation.
Keywords:  magnonics      spin waves      van der Waals magnets      yttrium iron garnet thin films  
Received:  24 March 2025      Revised:  14 May 2025      Accepted manuscript online:  27 May 2025
PACS:  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
  75.50.Gg (Ferrimagnetics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  96.12.Hg (Magnetic field and magnetism)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402400) and the National Natural Science Foundation of China (Grant No. 12374119).
Corresponding Authors:  Huajun Qin     E-mail:  qinhuajun@whu.edu.cn

Cite this article: 

Tengfei Xie(谢腾飞) and Huajun Qin(秦华军) Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator 2025 Chin. Phys. B 34 107202

[1] Burch K S, Mandrus D and Park J G 2018 Nature 563 47
[2] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[3] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 031305
[4] Liu N S,Wang C and Ji W 2022 Acta Phys. Sin. 71 127504 (in Chinese)
[5] Zhang B, Lu P, Tabrizian R, Feng P X L andWu Y 2024 npj Spintronics 2 6
[6] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[8] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[9] Soumyanarayanan A, Reyren N, Fert A and Panagopoulos C 2016 Nature 539 509
[10] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[11] Khitun A, BaoMandWang K L 2010 J. Phy. D: Appl. Phys. 43 264005
[12] Chumak A V, Vasyuchka V, Serga A and Hillebrands B 2015 Nat. Phys. 11 453
[13] Chumak A V, Kabos P, Wu M, et al. 2022 IEEE Trans. Magn. 58 1
[14] Zhang X X, Li L, Weber D, Goldberger J, Mak K F and Shan J 2020 Nat. Mater. 19 838
[15] Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K, McGuire M A, Xiao D and Xu X 2020 Nat. Phys. 17 20
[16] Shen X, Chen H, Li Y, Xia H, Zeng F, Xu J, Kwon H Y, Ji Y, Won C, Zhang W and Wu Y 2021 J. Magn. Magn. Mater. 528 167772
[17] MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P and Liu L 2019 Phys. Rev. Lett. 123 047204
[18] Xu H, Jia K, Huang Y, Meng F, Zhang Q, Zhang Y, Cheng C, Lan G, Dong J, Wei J, Feng J, He C, Yuan Z, Zhu M, He W, Wan C, Wei H, Wang S, Shao Q, Gu L, Coey M, Shi Y, Zhang G, Han X and Yu G 2023 Nat. Commun. 14 3824
[19] Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T and Li P 2021 2D Mater. 8 045030
[20] Schulz F, Litzius K, Powalla L, Birch M T, Gallardo R A, Satheesh S, Weigand M, Scholz T, Lotsch B V, Schütz G, Burghard M and Wintz S 2023 Nano Lett. 23 10126
[21] Bae Y J, Wang J, Scheie A, Xu J, Chica D G, Diederich G M, Cenker J, Ziebel M E, Bai Y, Ren H, Dean C R, Delor M, Xu X, Roy X, Kent A D and Zhu X 2022 Nature 609 282
[22] Xing W, Qiu L, Wang X, Yao Y, Ma Y, Cai R, Jia S, Xie X C and Han W 2019 Phys. Rev. X 9 011026
[23] Chen J, Yuan R, Yu K, Wang X, Sheng L, Wang J, Hua C, Yu W, Xiao J, Liu S, Yu D, Ansermet J P, Wang Z and Yu H 2025 Appl. Phys. Rev. 12 011407
[24] Chen G, Qi S, Liu J, Chen D, Wang J, Yan S, Zhang Y, Cao S, Lu M, Tian S, Chen K, Yu P, Liu Z, Xie X C, Xiao J, Shindou R and Chen J H 2021 Nat. Commun. 12 6279
[25] Qi S, Chen D, Chen K, Liu J, Chen G, Luo B, Cui H, Jia L, Li J, Huang M, Song Y, Han S, Tong L, Yu P, Liu Y, Wu H, Wu S, Xiao J, Shindou R, Xie X C and Chen J H 2023 Nat. Commun. 14 2526
[26] Zhang Z, Gao F Y, Curtis J B, Liu Z J, Chien Y C, von Hoegen A, Wong M T, Kurihara T, Suemoto T, Narang P, Baldini E and Nelson K A 2024 Nat. Phys. 20 801
[27] Wu D, Xu Y, Ye M and Duan W 2025 Sci. Adv. 11 eadu6562
[28] Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827
[29] Qin H, Hämäläinen S J, Arjas K, Witteveen J and van Dijken S 2018 Phys. Rev. B 98 224422
[30] Ma X, Li R, Zheng B, Huang L, Zhang Y, Wang S, Wang C, Tan H, Lu Y and Xiang B 2023 Nano Lett. 23 11226
[31] Solt Irvin H J 1962 J. Appl. Phys. 33 1189
[32] SSerha R O, Voronov A A, Schmoll D, Verba R, Levchenko K O, Koraltan S, Davídková K, Budinská B, Wang Q, Dobrovolskiy O V, Urbánek M, Lindner M, Reimann T, Dubs C, Gonzalez-Ballestero C, Abert C, Suess D, Bozhko D A, Knauer S and Chumak A V 2024 npj Spintronics 2 29
[33] Kosen S, van Loo A F, Bozhko D A, Mihalceanu L and Karenowska A D 2019 APL Mater. 7 101120
[34] Liu C, Chen J, Liu T, Heimbach F, Yu H, Xiao Y, Hu J, Liu M, Chang H, Stueckler T, Tu S, Zhang Y, Zhang Y, Gao P, Liao Z, Yu D, Xia K, Lei N, Zhao W and Wu M 2018 Nat. Commun. 9 738
[35] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[36] Kalinikos B and Slavin A 1986 J. Phys. C: Solid State Phys. 19 7013
[1] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[2] Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
Xinlin Mi(米锌林), Lijun Yan(闫丽君), Bimu Yao(姚碧霂), Shishen Yan(颜世申), Jinwei Rao(饶金威), and Lihui Bai(柏利慧). Chin. Phys. B, 2025, 34(6): 067508.
[3] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[4] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
[5] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
[6] Critical behavior of quasi-two-dimensional ferromagnet Cr1.04Te2
Wei Niu(钮伟), Qin-Xin Song(宋沁心), Shi-Qi Chang(常世琦), Min Wang(王敏), Kui Yuan(袁奎), Jia-Cheng Gao(高嘉程), Shuo Wang(王硕), Zhen-Dong Wang(王振东), Kai-Fei Liu(刘凯斐), Ping Liu(刘萍), Yong-Bing Xu(徐永兵), Xiao-Qian Zhang(张晓倩), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(7): 077506.
[7] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[8] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[9] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[10] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[11] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[12] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[13] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[14] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[15] Liquid phase epitaxy magnetic garnet films and their applications
Yi-Heng Rao(饶毅恒), Huai-Wu Zhang(张怀武), Qing-Hui Yang(杨青慧), Dai-Nan Zhang(张岱南), Li-Chuan Jin(金立川), Bo Ma(马博), Yu-Juan Wu(吴玉娟). Chin. Phys. B, 2018, 27(8): 086701.
No Suggested Reading articles found!