|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator |
| Tengfei Xie(谢腾飞)1 and Huajun Qin(秦华军)1,2,† |
1 School of Physics and Technology, Wuhan University, Wuhan 430072, China; 2 Wuhan Institute of Quantum Technology, Wuhan 430206, China |
|
|
|
|
Abstract Spin waves in van der Waals magnets hold promise for magnonic devices and circuits down to the two-dimensional limit. However, their short decay lengths pose challenges for practical applications. Here, we report on a material platform consisting of a van der Waals magnet, Fe$_5$GeTe$_2$ (FGT), and a ferrimagnetic insulator of yttrium iron garnet, Y$_3$Fe$_5$O$_{12}$ (YIG), which supports the low-loss propagation of spin waves. Using broadband spin-wave spectroscopy, we observed an increase in spin-wave group velocity with decreasing temperature, which peaks at 30 K in the YIG and FGT/YIG films. This effect is ascribed to a change in the saturation magnetization of YIG and FGT/YIG at low temperature, resulting in a change in the spin-wave dispersion relations. Using micromagnetic simulations, we further investigated spin-wave propagation in an FGT/YIG bilayer and revealed a longer spin-wave decay length in the bilayer than in a single FGT layer, which is due to the lower effective damping in the bilayer. Moreover, asymmetric spin-wave dispersion, induced by a chiral dipolar interaction between the YIG and FGT layers, enables nonreciprocal control of spin-wave propagation.
|
Received: 24 March 2025
Revised: 14 May 2025
Accepted manuscript online: 27 May 2025
|
|
PACS:
|
72.10.Di
|
(Scattering by phonons, magnons, and other nonlocalized excitations)
|
| |
75.50.Gg
|
(Ferrimagnetics)
|
| |
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
| |
96.12.Hg
|
(Magnetic field and magnetism)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402400) and the National Natural Science Foundation of China (Grant No. 12374119). |
Corresponding Authors:
Huajun Qin
E-mail: qinhuajun@whu.edu.cn
|
Cite this article:
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军) Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator 2025 Chin. Phys. B 34 107202
|
[1] Burch K S, Mandrus D and Park J G 2018 Nature 563 47 [2] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 [3] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 031305 [4] Liu N S,Wang C and Ji W 2022 Acta Phys. Sin. 71 127504 (in Chinese) [5] Zhang B, Lu P, Tabrizian R, Feng P X L andWu Y 2024 npj Spintronics 2 6 [6] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [8] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [9] Soumyanarayanan A, Reyren N, Fert A and Panagopoulos C 2016 Nature 539 509 [10] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262 [11] Khitun A, BaoMandWang K L 2010 J. Phy. D: Appl. Phys. 43 264005 [12] Chumak A V, Vasyuchka V, Serga A and Hillebrands B 2015 Nat. Phys. 11 453 [13] Chumak A V, Kabos P, Wu M, et al. 2022 IEEE Trans. Magn. 58 1 [14] Zhang X X, Li L, Weber D, Goldberger J, Mak K F and Shan J 2020 Nat. Mater. 19 838 [15] Cenker J, Huang B, Suri N, Thijssen P, Miller A, Song T, Taniguchi T, Watanabe K, McGuire M A, Xiao D and Xu X 2020 Nat. Phys. 17 20 [16] Shen X, Chen H, Li Y, Xia H, Zeng F, Xu J, Kwon H Y, Ji Y, Won C, Zhang W and Wu Y 2021 J. Magn. Magn. Mater. 528 167772 [17] MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P and Liu L 2019 Phys. Rev. Lett. 123 047204 [18] Xu H, Jia K, Huang Y, Meng F, Zhang Q, Zhang Y, Cheng C, Lan G, Dong J, Wei J, Feng J, He C, Yuan Z, Zhu M, He W, Wan C, Wei H, Wang S, Shao Q, Gu L, Coey M, Shi Y, Zhang G, Han X and Yu G 2023 Nat. Commun. 14 3824 [19] Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T and Li P 2021 2D Mater. 8 045030 [20] Schulz F, Litzius K, Powalla L, Birch M T, Gallardo R A, Satheesh S, Weigand M, Scholz T, Lotsch B V, Schütz G, Burghard M and Wintz S 2023 Nano Lett. 23 10126 [21] Bae Y J, Wang J, Scheie A, Xu J, Chica D G, Diederich G M, Cenker J, Ziebel M E, Bai Y, Ren H, Dean C R, Delor M, Xu X, Roy X, Kent A D and Zhu X 2022 Nature 609 282 [22] Xing W, Qiu L, Wang X, Yao Y, Ma Y, Cai R, Jia S, Xie X C and Han W 2019 Phys. Rev. X 9 011026 [23] Chen J, Yuan R, Yu K, Wang X, Sheng L, Wang J, Hua C, Yu W, Xiao J, Liu S, Yu D, Ansermet J P, Wang Z and Yu H 2025 Appl. Phys. Rev. 12 011407 [24] Chen G, Qi S, Liu J, Chen D, Wang J, Yan S, Zhang Y, Cao S, Lu M, Tian S, Chen K, Yu P, Liu Z, Xie X C, Xiao J, Shindou R and Chen J H 2021 Nat. Commun. 12 6279 [25] Qi S, Chen D, Chen K, Liu J, Chen G, Luo B, Cui H, Jia L, Li J, Huang M, Song Y, Han S, Tong L, Yu P, Liu Y, Wu H, Wu S, Xiao J, Shindou R, Xie X C and Chen J H 2023 Nat. Commun. 14 2526 [26] Zhang Z, Gao F Y, Curtis J B, Liu Z J, Chien Y C, von Hoegen A, Wong M T, Kurihara T, Suemoto T, Narang P, Baldini E and Nelson K A 2024 Nat. Phys. 20 801 [27] Wu D, Xu Y, Ye M and Duan W 2025 Sci. Adv. 11 eadu6562 [28] Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827 [29] Qin H, Hämäläinen S J, Arjas K, Witteveen J and van Dijken S 2018 Phys. Rev. B 98 224422 [30] Ma X, Li R, Zheng B, Huang L, Zhang Y, Wang S, Wang C, Tan H, Lu Y and Xiang B 2023 Nano Lett. 23 11226 [31] Solt Irvin H J 1962 J. Appl. Phys. 33 1189 [32] SSerha R O, Voronov A A, Schmoll D, Verba R, Levchenko K O, Koraltan S, Davídková K, Budinská B, Wang Q, Dobrovolskiy O V, Urbánek M, Lindner M, Reimann T, Dubs C, Gonzalez-Ballestero C, Abert C, Suess D, Bozhko D A, Knauer S and Chumak A V 2024 npj Spintronics 2 29 [33] Kosen S, van Loo A F, Bozhko D A, Mihalceanu L and Karenowska A D 2019 APL Mater. 7 101120 [34] Liu C, Chen J, Liu T, Heimbach F, Yu H, Xiao Y, Hu J, Liu M, Chang H, Stueckler T, Tu S, Zhang Y, Zhang Y, Gao P, Liao Z, Yu D, Xia K, Lei N, Zhao W and Wu M 2018 Nat. Commun. 9 738 [35] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [36] Kalinikos B and Slavin A 1986 J. Phys. C: Solid State Phys. 19 7013 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|