Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087403    DOI: 10.1088/1674-1056/ad4cd3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties

Tianchang Xue(薛天畅), Ping Wei(魏平)†, Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞)‡
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  The method to combine thermoelectric (TE) and magnetocaloric (MC) cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance. In this work, using n-type Bi$_{2}$Te$_{2.7}$Se$_{0.3}$ (BTS) as the TE base material and Gd as the second-phase MC material, Gd/BTS composites were prepared by the spark plasma sintering method. In the composites, interfacial reaction between Gd and BTS was identified, resulting in the formation of GdTe, which has a large impact on the electron concentration through the adjustment of defect concentration. The MC/TE composite containing 2.5 wt% Gd exhibited a $ZT$ value of 0.6 at 300 K, essentially retaining the original TE performance, while all the composites largely maintained the excellent MC performance of Gd. This work provides a potential pathway to achieving high performance in MC/TE composites.
Keywords:  thermo-electro-magnetic energy conversion materials      interfacial reaction      thermoelectric performance      magnetic entropy change  
Received:  03 February 2024      Revised:  09 April 2024      Accepted manuscript online:  17 May 2024
PACS:  74.25.fg (Thermoelectric effects)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  68.35.Ct (Interface structure and roughness)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900 and 2023YFB3809400), the National Natural Science Foundation of China (Grant Nos. 52130203 and 52172232), and the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2022B1515120005).
Corresponding Authors:  Ping Wei, Wenyu Zhao     E-mail:  pingwei@whut.edu.cn;wyzhao@whut.edu.cn

Cite this article: 

Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞) Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties 2024 Chin. Phys. B 33 087403

[1] Pezzutto S, De Felice M, Fazeli R, Kranzl L and Zambotti S 2017 Energies 10 1253
[2] Pezzutto S, Fazeli R, De Felice M and Sparber W 2016 WIREs Energy Environ. 5 649
[3] Yang L, Chen Z G, Dargusch M S and Zou J 2017 Adv. Energy Mater. 8 1701797
[4] He J and Tritt T M 2017 Science 357 1369 eaak9997
[5] Wang C Y, Zhang Y X, Han F and Jiang Z D 2023 Micromachines 14 1853
[6] Alam N, Salman Ali M, Sajid S, Sharma D and Hasan Z 2023 Sol. Energy 263 111892
[7] Chen W Y, Shi X, Zou J and Chen Z G 2022 Small Methods 6 2101235
[8] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electronic Mater. 5 1800904
[9] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 48403
[10] Mao J, Chen G and Ren Z F 2021 Nat. Mater. 20 454
[11] Saberi Y and Sajjadi S A 2022 J. Alloys Compd. 904 163918
[12] Greco A, Farina A R and Masselli C 2021 Italian J. Eng. Sci. 65 58
[13] Ram N R, Prakash M, Naresh U, Kumar N S, Sarmash T S, Subbarao T, Kumar R J, Kumar G R and Naidu K C B 2018 J. Supercond. Nov. Magn. 31 1971
[14] Kitanovski A, Plaznik U, Tomc U and Poredoš A 2015 Int. J. Refrig. 57 288
[15] Gschneidner K A and Pecharsky V K 2008 Int. J. Refrig. 31 945
[16] Dall’olio S, Masche M, Liang J, Insinga A R, Eriksen D K, Bjørk R, Nielsen K K, Barcza A, Vieyra H A, Beek N V, Bez H N, Engelbrecht K and Bahl C R H 2021 Int. J. Refrig. 132 243
[17] Kitanovski A 2020 Adv. Energy Mater. 10 1903741
[18] Xu S S, Fu Q, Zhou Y F, Peng L, Gao X Q, Li Z X, Gong M Q, Dong X Q and Shen J 2023 Chin. Phys. B 32 27502
[19] Kamran M S, Ahmad H O and Wang H S 2020 Renew. Sust. Energ. Rev. 133 110247
[20] Wei P, Li L Z, Zhu W T, Nie X L, Zhang J Q, Zhao W Y and Zhang Q J 2022 Mater. China 41 965
[21] Tomc U, Tušek J, Kitanovski A and Poredoš A 2013 Appl. Therm. Eng. 58 1
[22] Monfared B 2017 Int. J. Refrig. 74 324
[23] Li C C, Zhao W Y and Zhang Q J 2022 Sci. Bull. 67 891
[24] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[25] Scheibel F, Gottschall T, Taubel A, Fries M, Skokov K P, Terwey A, Keune W, Ollefs K, Wende H, Farle M, Acet M, Gutfleisch O and Gruner M E 2018 Energy Technol. 6 1397
[26] Wei P, Ke B, Xing L, Li C C, Ma S F, Nie X L, Zhu W T, Sang X H, Zhang Q J, Van Tendeloo G and Zhao W Y 2020 Mater. Charact. 163 110240
[27] Wang B, Yu J, Li C C, Nie X L, Zhu W T, Wei P, Zhao W Y and Zhang Q J 2023 J. Inorg. Mater. 38 663
[28] Xing L, Cui W J, Sang X H, Hu F X, Wei P, Zhu W T, Nie X L, Zhang Q J and Zhao W Y 2021 J. Materiomics 7 998
[29] Li L Z, Wei P, Ke B, Nie X L, Zhu W, Zhao W Y and Zhang Q J 2023 Mater. Charact. 199 112760
[30] Li M, An X Z and Wu Y H 2023 Adv. Powder Technol. 34 103953
[31] Burrola-Gándara L A, Santillan-Rodriguez C R, Rivera-Gomez F J, Saenz-Hernandez R J, Botello-Zubiate M E and Matutes-Aquino J A 2015 J. Appl. Phys. 117 17D144
[32] Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305
[33] Gayner C and Kar K K 2016 Prog. Mater Sci. 83 330
[34] Liu C S, Xu W J, Wei P, Ke S Q, Cui W J, Li L Z, Liang D, Ye X F, Chen T T, Nie X L, Zhu W, Zhao W Y and Zhang Q J 2024 Energy Environ. Mater. 0 12710
[35] Rhoderick E H and Rothwarf A 1979 Phys. Today 32 66
[36] Ahamed I, Chauhan Y S, Bhowmick S and Agarwal A 2023 Com. Mater. Sci. 216 111869
[37] Ryu B 2018 J. Korean Phy. Soc. 72 122
[38] Zhu Y K, Jin Y F, Zhu J B, Dong X Y, Liu M, Sun Y X, Guo M C, Li F S, Guo F K, Zhang Q, Liu Z H, Cai W and Sui J H 2023 Adv. Sci. 10 2206395
[39] Hu C L, Xia K Y, Fu C G, Zhao X B and Zhu T J 2022 Energy Environ. Sci. 15 1406
[40] Li S K, Liu Y D, Liu F S, He D S, He J Q, Luo J, Xiao Y G and Pan F 2018 Nano Energy 49 257
[41] Samanta M, Pal K, Waghmare U V and Biswas K 2020 Angew. Chem. Int. Ed. 59 4822
[1] GaInX3(X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[2] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[3] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[4] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[5] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[6] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[7] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[8] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[9] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[10] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[11] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
[12] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[13] Observation of giant magnetocaloric effect under low magnetic fields in EuTi1-xCoxO3
Qi-Lei Sun(孙启磊), Zhao-Jun Mo(莫兆军), Jun Shen(沈俊), Yu-Jin Li(黎玉进), Lan Li(李兰), Jun-Kai Zhang(张君凯), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2017, 26(11): 117501.
[14] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[15] Magnetic properties and magnetocaloric effects in Er1-xGdxCoAl intermetallic compounds
Gao Xin-Qiang (高新强), Mo Zhao-Jun (莫兆军), Shen Jun (沈俊), Li Ke (李珂), Dai Wei (戴巍), Wu Jian-Feng (吴剑峰), Tang Cheng-Chun (唐成春). Chin. Phys. B, 2015, 24(9): 097502.
No Suggested Reading articles found!