|
|
|
Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets |
| Haodong Fan(樊浩东)1,2, Zhongshu Feng(冯重舒)3, Tingwei Chen(陈亭伟)2, Xiaofeng Han(韩晓峰)3, Xinyu Shu(舒新愉)3, Mingzhang Wei(卫鸣璋)3, Shiqi Liu(刘士琦)2, Mengxi Wang(王梦溪)2, Shengru Chen(陈盛如)2, Xuejian Tang(唐学健)2, Menghao Jin(金蒙豪)3, Yungui Ma(马云贵)1, Bo Liu(刘波)2,†, and Tiejun Zhou(周铁军)2,3,‡ |
1 State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China; 2 State Key Laboratory of Spintronic Devices and Technologies, Hangzhou 311305, China; 3 School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
|
|
Abstract Interlayer exchange coupling (IEC) plays a critical role in spin-orbit torque (SOT) switching in synthetic magnets. This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic antiferromagnets and synthetic ferromagnets. The antiferromagnetic and ferromagnetic coupling states are precisely engineered through Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions by modulating the Ir spacer thickness. Experimental results reveal that the critical switching current density exhibits a strong positive correlation with the IEC strength, regardless of the coupling type. A comprehensive theoretical framework based on the Landau-Lifshitz-Gilbert equation elucidates how IEC contributes to the effective energy barrier that must be overcome during SOT-induced magnetization switching. Significantly, the antiferromagnetically coupled samples demonstrate enhanced SOT efficiency, with the spin Hall angle being directly proportional to the antiferromagnetic exchange coupling field. These insights establish a coherent physical paradigm for understanding IEC-dependent SOT dynamics and provide strategic design principles for the development of energy-efficient next-generation spintronic devices.
|
Received: 12 May 2025
Revised: 12 June 2025
Accepted manuscript online: 13 June 2025
|
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
| |
75.60.Jk
|
(Magnetization reversal mechanisms)
|
| |
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
| Fund: Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01053), the Key Research and Development Program of Zhejiang Province (Grant No. 2021C01039), the National Natural Science Foundation of China (Grant No. 62293493), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ21A050001). |
Corresponding Authors:
Bo Liu, Tiejun Zhou
E-mail: liubo@spinlab.cn;tjzhou@hdu.edu.cn
|
Cite this article:
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军) Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets 2025 Chin. Phys. B 34 098501
|
[1] Liu L, Yu J, González-Hernández R, Li C, Deng J Y. Lin W N, Zhou C H, Zhou T J, Zhou J, Wang H, Guo R, Yoong H Y, Chow G M, Han X F, Dupé B, Železný J, Sinova J and Chen J S 2020 Phys. Rev. B 101 220402 [2] Sinova, J, Valenzuela, S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [3] Song Q, Mi J, Zhao D, Su T, Yuan W, Xing W Y, Chen Y Y, Wang T Y, Wu T, Chen X H, Xie X C, Zhang C, Shi J and Han W 2016 Nat. Commun. 7 13485 [4] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K and Zhang W 2021 IEEE Trans. Magn. 57 800439 [5] Zhu L J, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev. 8 031308 [6] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [7] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [8] Fan H D, Shao Z J, Wang J L, Jin M H, Wu B R, Feng Z S, Wei M Z, Yu C Q, Wen J H, Li H, Chen T W, Liu B, Li W J and Zhou T J 2023 Phys. Rev. B 108 224409 [9] Han X F, Wang X, Wan C H, Yu G Q and Lv X R 2021 Appl. Phys. Lett. 118 120502 [10] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 [11] Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Pennycook S, Manchon A and Chen J S 2021 Nat. Nanotechnol. 16 277 [12] Shu X Y, Liu L, Zhou J, LinWN, Xie Q D, Zhao T Y, Zhou C H, Chen S H, Wang H, Chai J W, Ding Y S, Chen W and Chen J S 2022 Phys. Rev. Appl. 17 024031 [13] Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F and Song C 2017 Phys. Rev. B 95 104435 [14] Haazen P P J, Mure E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299 [15] Zhou Z Y, Cheng X K, Hu M L, Chu R Y, Bai H, Han L, Liu J W, Pan F and Song C 2025 Nature 638 645 [16] Higo T, Kondou K, Nomoto T, Shiga M, Sakamoto S, Chen X Z, Nishio-Hamane D, Arita R, Otani Y, Miwa S and Nakatsuji S 2022 Nature 607 474 [17] Qin P X, Yan H, Wang X N, Chen H Y, Meng Z, Dong J T, Zhu M, Cai J L, Feng Z X, Zhou X R, Liu L, Zhang T L, Zeng Z M, Zhang J, Jiang C B and Liu Z Q 2023 Nature 613 485 [18] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447 [19] Krempaský J, Šmejkal L, D’souza S W, et al. 2024 Nature 626 517 [20] Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S and Nakatsuji S 2023 Nature 613 490 [21] Chen H Y, Liu L, Zhou X R, Meng Z, Wang X N, Duan Z Y, Zhao G J, Yan H, Qin P X and Liu Z Q 2024 Adv. Mater. 36 2310379 [22] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217 [23] Zhu L J 2023 Adv. Mater. 35 2300853 [24] Chen R Y, Gao Y, Zhang X C, Zhang R Q, Yin S Q, Chen X Z, Zhou X F, Zhou Y J, Xia J, Zhou Y, Wang S G, Pan F, Zhang Y and Song C 2020 Nano. Lett. 20 3299 [25] Wang Z L, Li P Z, Fattouhi M, Yao Y X, Hees Y LWV, Schippers C F, Zhang X Y, Lavrijsen R, Garcia-Sanchez F, Martinez E, Fert A, Zhao W S and Koopmans B 2023 Cell Rep. Phys. Sci. 4 101334 [26] Wang Q H, Ni M Y, Li S J, Zheng F W, Lu H Y and Zhang P 2024 Chin. Phys. Lett. 41 057401 [27] Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X and Wang W G 2017 Phys. Rev. B 95 104434 [28] Xie X J, Wang X J, Wang W, Zhao X N, Bai L H, Chen Y X, Tian Y F and Yan S S 2023 Adv. Mater. 35 2208275 [29] Parkin S S P 1991 Phys. Rev. Lett. 67 3598 [30] Yoshida C, Takenaga T, Iba Y, Yamazaki Y, Noshiro H, Tsunoda K, Hatada A, Nakabayashi M, Takahashi A, Aoki M and Sugii T 2013 IEEE Trans. Magn. 49 4363 [31] Fan H D,Wei M Z, Feng Z S,Wu B R, Jin M H, Shao Z J, Yu C Q, Liu B, Li W J and Zhou T J 2025 Phys. Rev. Mater. 9 044402 [32] Zhang T F, Wang Q W, Chen M, Dong J, Zhao Q, Li Z M, Liu Q F, Wang J B and Wei J W 2025 Chin. Phys. B 34 057201 [33] Zhang R Q, Shi G Y, Su J, Shang Y X, Cai J W, Liao L Y, Pan F and Song C 2020 Appl. Phys. Lett. 117 212403 [34] Fan H D, Jin M H, Luo Y M, Yang H X, Wu B R, Feng Z S, Zhuang Y S, Shao Z J, Yu C Q, Li H, Wen J H, Wang N N, Liu B, Li W J and Zhou T J 2023 Adv. Funct. Mater. 33 2211953 [35] Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403 [36] Yakushiji K, Sugihara A, Fukushima A, Kubota H and Yuasa S 2017 Appl. Phys. Lett. 110 092406 [37] Li Z S, Fei Y N, Chen L, Zhan X, Yang L P, Yan C J,WangWQ, Zhou K Y, Li H T, Ma F S, Zhou T J, Du Y W and Liu R H 2022 Phys. Rev. B 105 184419 [38] Li Y, Jin X J, Pan P F, Tan F N, LewWS and Ma F S 2018 Chin. Phys. B 27 127502 [39] Feng Z S, Yu C Q, Huang H X, Fan H D, Wei M Z, Wu B R, Jin M H, Zhuang Y S, Shao Z J, Li H,Wen J H, Zhang J, Zhang X F,Wang N N, Mu S and Zhou T J 2023 Chin. Phys. B 32 048504 [40] Saito Y, Tezuka N, Ikeda S and Endoh T 2021 Phys. Rev. B 104 064439 [41] Parkin S S P and Mauri D 1991 Phys. Rev. B 44 7131 [42] Shen B W, Yang M Y, Li Y R, Yu P Y, Gao J F, Cui B S, Yu G Q and Luo J 2024 Appl. Phys. Lett. 124 012401 [43] Saito Y, Ikeda S and Endoh T 2022 Phys. Rev. B 105 054421 [44] Fan H D, Jin M H, Wu B R, Wei M Z, Wang J L, Shao Z J, Yu C Q, Wen J H, Li H, LiWJ and Zhou T J 2023 Appl. Phys. Lett. 122 262404 [45] Ma Q L, Li Y F, Choi Y S, Chen W C, Han S J and Chien C L 2020 Appl. Phys. Lett. 117 172403 [46] Liu L, Zhao X T, Liu W, Song Y H, Zhao X G and Zhang Z D 2021 J. Phys. D: Appl. Phys. 54 505003 [47] Fache T, Rojas-Sanchez J C, Badie L, Mangin S and Petit-Watelot S 2020 Phys. Rev. B 102 064425 [48] Ishikuro Y, Kawaguchi M, Taniguchi T and Hayashi M 2020 Phys. Rev. B 101 014404 [49] Chuang T C, Pai C F and Huang S Y 2019 Phys. Rev. Appl. 11 061005 [50] Pai C F, Mann M, Tan A J and Beach G S D 2016 Phys. Rev. B 93 144409 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|