Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017506    DOI: 10.1088/1674-1056/ac9b01

Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet

Linlin Li(李林霖)1, Jia Luo(罗佳)1, Jing Xia(夏静)2, Yan Zhou(周艳)3, Xiaoxi Liu(刘小晰)2, and Guoping Zhao(赵国平)1,4,†
1 College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China;
2 Department of Electrical and Computer Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan;
3 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
4 Center for Magnetism and Spintronics, Sichuan Normal University, Chengdu 610068, China
Abstract  Skyrmions in synthetic antiferromagnetic (SAF) systems have attracted much attention in recent years due to their superior stability, high-speed mobility, and completely compensated skyrmion Hall effect. They are promising building blocks for the next generation of magnetic storage and computing devices with ultra-low energy and ultra-high density. Here, we theoretically investigate the motion of a skyrmion in an SAF bilayer racetrack and find the velocity of a skyrmion can be controlled jointly by the edge effect and the driving force induced by the spin current. Furthermore, we propose a logic gate that can realize different logic functions of logic AND, OR, NOT, NAND, NOR, and XOR gates. Several effects including the spin-orbit torque, the skyrmion Hall effect, skyrmion-skyrmion repulsion, and skyrmion-edge interaction are considered in this design. Our work may provide a way to utilize the SAF skyrmion as a versatile information carrier for future energy-efficient logic gates.
Keywords:  skyrmions      logic gates      synthetic antiferromagnets      micromagnetic simulation  
Received:  26 July 2022      Revised:  28 September 2022      Accepted manuscript online:  18 October 2022
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.78.Cd (Micromagnetic simulations ?)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  12.39.Dc (Skyrmions)  
Fund: Guoping Zhao acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 51771127, 52171188, and 52111530143) and the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province, China (Grant No. 2021ZYD0025). Jing Xia was a JSPS International Research Fellow supported by JSPS KAKENHI (Grant No. JP22F22061). Yan Zhou acknowledges the support from Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120047), Guangdong Special Support Project (Grant No. 2019BT02X030), Shenzhen Fundamental Research Fund (Grant No. JCYJ20210324120213037), Shenzhen Peacock Group Plan (No. KQTD20180413181702403), Pearl River Recruitment Program of Talents (Grant No. 2017GC010293), and the National Natural Science Foundation of China (Grant Nos. 11974298 and 61961136006). Xiaoxi Liu acknowledges the support from the Grantsin-Aid Scientific Research from JSPS KAKENHI (Grant Nos. JP20F20363, JP21H01364, and JP21K18872).
Corresponding Authors:  Guoping Zhao     E-mail:

Cite this article: 

Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平) Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet 2023 Chin. Phys. B 32 017506

[1] Skyrme T H R 1962 Nucl. Phys. 31 556
[2] Bogdanov A N and Yablonskii D A 1989 J. Exp. Theor. Phys. 68 101
[3] Bogdanov N and Hubert A 1994 J. Magn. Magn. Matter. 138 255
[4] Wright D C and Mermin N D 1989 Rev. Mod. Phys. 61 385
[5] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[6] Tewari S, Belitz D and Kirkpatrick T R 2006 Phys. Rev. Lett. 96 047207
[7] Binz B, Vishwanath A and Aji V 2006 Phys. Rev. Lett. 96 207202
[8] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[9] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449
[10] Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
[11] Yang H X, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210
[12] Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, C. J B A, Amiri P K and Wang K L 2018 Nano Lett. 18 980
[13] Wang L, Liu C, Mehmood N, Han G, Wang Y D, Xu X L, Feng C, Hou Z P, Peng Y, Gao X S and Yu G H 2019 ACS Appl. Mater. Interfaces 11 12098
[14] Moreau-Luchaire C, Mouta S, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[15] Ye C, Li L L, Shu Y, Li Q R, Xia J, Hou Z P, Zhou Y, Liu X X, Yang Y Y and Zhao G P 2022 Rare Met. 41 2200
[16] Zhang J Y, Zhang Y, Gao Y, Zhao G P, Qiu L, Wang K Y, Dou P W, Peng W L, Zhuang Y, Wu Y F, Yu G Q, Zhu Z Z, Zhao Y C, Guo Y Q, Zhu T, Cai J W, Shen B G and Wang S G 2020 Adv. Mater. 32 1907452
[17] Tang J, Kong L Y, Wang W W, Du H F and Tian M l 2019 Chin. Phys. B 28 087503
[18] Kang W, Huang Y Q, Zhang X C, Zhou Y and Zhao W S 2016 Proc. IEEE 104 2040
[19] Finocchio G, Büttner F, Tomasello R, Carpentieri M and Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001
[20] Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K and Wang K L 2017 Nano Lett. 17 261
[21] Fert A and Van Dau F N 2019 C. R. Phys. 20 817
[22] Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N and Zhang Y G 2018 Acta Phys. Sin. 67 131205 (in Chinese)
[23] Xing X J, Pong P W T and Zhou Y 2016 Phys. Rev. B 94 054408
[24] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[25] Liang X, Zhao L, Qiu L, Li S, Ding L H, Feng Y H, Zhang X C, Zhou Y and Zhao G P 2018 Acta Phys. Sin. 67 137510 (in Chinese)
[26] He Z Z, Angizi S and Fan D L 2017 IEEE Magn. Lett. 8 4305705
[27] Luo S J, Song M, Li X, Zhang Y, Hong J, Yang X F, Zou X C, Xu N and You L 2018 Nano Lett. 18 1180
[28] Chauwin M, Hu X, Garcia-Sanchez F, Betrabet N, Paler A, Moutafis C and Friedman J S 2019 Phys. Rev. Appl. 12 064053
[29] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[30] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217
[31] Fattouhi M, Mak K Y, Zhou Y, Zhang X, Liu X X and El Hafidi M 2021 Phys. Rev. Appl. 16 014040
[32] Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X and Zhou Y 2018 Acta Phys. Sin. 67 137505 (in Chinese)
[33] White J S, Prsa K, Huang P, Omrani A A, Zivkovic I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J and Ronnow H M 2014 Phys. Rev. Lett. 113 107203
[34] Liu Y Z, Yin G, Zang J D, Shi J and Lake R K 2015 Appl. Phys. Lett. 107 152411
[35] Zhang X C, Ezawa M, Xiao D, Zhao G P, Liu Y W and Zhou Y 2015 Nanotechnology 26 225701
[36] Okamura Y, Kagawa F, Seki S and Tokura Y 2016 Nat. Commun. 7 12669
[37] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[38] Lin S Z, Batista C D, Reichhardt C and Saxena A 2014 Phys. Rev. Lett. 112 187203
[39] Zhang W, Jungfleisch M B, Freimuth F, Jiang W, Sklenar J, Pearson J E, Ketterson J B, Mokrousov Y and Hoffmann A 2015 Phys. Rev. B 92 144405
[40] Zhang X C, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep 5 7643
[41] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[42] Zhang X C, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[43] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Nat. Commun. 10 5153
[44] Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V and Fert A 2020 Nat. Mater. 19 34
[45] Mak K Y, Xia J, Zhang X C, Li L, Fattouhi M, Ezawa M, Liu X X and Zhou Y 2022 Rare Met. 41 2249
[46] Thiele A A 1973 Phys. Rev. Lett. 30 230
[47] Ma X P, Piao H G, Yang L, Kim D H, You C Y and Pan L Q 2020 Chin Phys. B 29 097502
[48] Zhang X C, Ezawa M and Zhou Y 2015 Sci. Rep 5 9400
[49] Luo S J and You L 2021 APL Mater. 9 050901
[50] Lin S Z, Reichhardt C, Batista C D and Saxena A 2013 Phys. Rev. B 87 214419
[51] Shen L C, Xia J, Zhao G P, Zhang X C, Ezawa M, Tretiakov O A, Liu X X and Zhou Y 2019 Appl. Phys. Lett. 114 042402
[52] Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349
[53] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158
[54] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
[55] Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601
[56] Jiang W J, Zhang X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2016 Nat. Phys. 13 162
[57] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203
[58] Zhao L, Liang X, Xia J, Zhao G P and Zhou Y 2020 Nanoscale 12 9507
[59] Xia J, Zhang X C, Mak K Y, Ezawa M, Tretiakov O A, Zhou Y, Zhao G P and Liu X X 2021 Phys. Rev. B 103 174408
[60] Liang X, Zhao G P, Shen L C, Xia J, Zhao L, Zhang X C and Zhou Y 2019 Phys. Rev. B 100 144439
[61] Donahue M J and Porter DG 1999 Interagency Report NISTIR 6376
[62] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[63] Iwasaki J, Koshibae W and Nagaosa N 2014 Nano Lett. 14 4432
[64] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[65] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[3] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[4] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[5] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[6] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[7] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
[8] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[9] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[10] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[11] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[12] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[13] Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection
Dongzhou Zhong(钟东洲), Wei Luo(罗伟), Geliang Xu(许葛亮). Chin. Phys. B, 2016, 25(9): 094202.
[14] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华). Chin. Phys. B, 2015, 24(9): 097503.
[15] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang (苏垣昌), Lei Hai-Yang (雷海洋), Hu Jing-Guo (胡经国). Chin. Phys. B, 2015, 24(9): 097506.
No Suggested Reading articles found!