CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer |
Zi-Bo Zhang(张子博)1 and Yong Hu(胡勇)1,2,† |
1 Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China; 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
|
|
Abstract A numerical study reports that the zero-field skyrmions in FeGe thin films are stabilized when a FeGe layer is exchange coupled to a single-domain Ni layer, which has been magnetized perpendicularly. Due to the small thickness, an easy-plane anisotropy in the FeGe layer is taken into account, and the skyrmion-crystal state is favored to appear for low anisotropies and intermediate FeGe/Ni interlayer exchange couplings, and finally transformed from a labyrinth-like and into an out-of-plane uniform state for the large couplings or into an in-plane state for the high anisotropies. Furthermore, the maximum skyrmion charge number is bigger for the periodic and fixed boundary conditions with an out-of-plane magnetization; on the contrary, the Bloch-type skyrmions can be frozen and stabilized for the larger couplings on the fixed boundary with an in-plane magnetization, similar to the experimental results of the magnetic-field-induced skyrmions. Finally, the skyrmion charge number and diameter both decrease if the nonmagnetic defects exist, and the skyrmion centers are prone to being captured by defect sites. This work evidences that the ensembles of homochiral skyrmions stabilized in the multilayers fabricated by well-established technologies present a roadmap to design new classes of the materials that can host skyrmions.
|
Received: 27 February 2021
Revised: 23 March 2021
Accepted manuscript online: 05 April 2021
|
PACS:
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.10.Hk
|
(Classical spin models)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774045), the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant No. 20180510008), and the Fundamental Research Funds for Central Universities, China (Grant No. N182410008-1). |
Corresponding Authors:
Yong Hu
E-mail: huyong@mail.neu.edu.cn
|
Cite this article:
Zi-Bo Zhang(张子博) and Yong Hu(胡勇) Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer 2021 Chin. Phys. B 30 077503
|
[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2019 Science 323 915 [2] Zhang X, Zhou Y, Song K M, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G and Woo S 2020 J. Phys.: Condens. Matter 32 143001 [3] Fert A, Reyren N and Cros V 2017 Nature Rev. Matter. 2 17031 [4] Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1 [5] Wiesendanger R 2016 Nature Rev. Mater. 1 16044 [6] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648 [7] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899 [8] Zhou Y 2019 Natl. Sci. Rev. 6 210 [9] Wilhelm H, Baenitz M, Schmidt M, Rößler U K, Leonov A A and Bogdanov A N 2011 Phys. Rev. Lett. 107 127203 [10] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203 [11] Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S and Tokura Y 2012 Nano Lett. 12 1673 [12] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106 [13] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [14] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713 [15] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636 [16] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742 [17] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [18] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198 [19] Berruto G, Madan I, Murooka Y, Vanacore G M, Pomarico E, Rajeswari J, Lamb R, Huang P, Kruchkov A J, Togawa Y, LaGrange T, McGrouther D, R?nnow H M and Carbone F 2018 Phys. Rev. Lett. 120 117201 [20] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404 [21] Nandy A K, Kiselev N S and Blügel S 2016 Phys. Rev. Lett. 116 177202 [22] Sui M X, Zhang Z B, Chi X D, Zhang J Y and Hu Y 2021 Front. Phys. 16 23501 [23] Duong N K, Raju M, Petrović A P, Tomasello R, Finocchio G and Panagopoulos C 2019 Appl. Phys. Lett. 114 072401 [24] Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205 [25] Cortés-Ortuño D, Romming N, Beg M, von Bergmann K, Kubetzka A, Hovorka O, Fangohr H and Wiesendanger R 2019 Phys. Rev. B 99 214408 [26] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A and Liu K 2015 Nat. Commun. 6 8462 [27] Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A and Ding H F 2013 Phys. Rev. Lett. 110 167201 [28] Liu G B, Li D, de Chatel P F, Wang J, Liu W and Zhang Z D 2016 Chin. Phys. B 25 067203 [29] Jin C M and Du H F 2015 Chin. Phys. B 24 128501 [30] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503 [31] Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y and Tian M 2015 Nat. Commun. 6 8504 [32] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652 [33] Fallon K, Hughes S, Zeissler K, Legrand W, Ajejas F, Maccariello D, McFadzean S, Smith W, McGrouther D, Collin S, Reyren N, Cros V, Marrows C H and McVitie S 2020 Small 16 1907450 [34] Ouyang T Y, Shu G J, Hu C D and Chou F C 2014 IEEE Trans. Magn. 50 1500404 [35] Silva R L, Secchin L D, Moura-Melo W A, Pereira A R and Stamps R L 2014 Phys. Rev. B 89 054434 [36] Brown B L, Täuber U C and Pleimling M 2019 Phys. Rev. B 100 024410 [37] Desplat L, Suess D, Kim J V and Stamps R L 2018 Phys. Rev. B 98 134407 [38] Mochizuki M 2017 Appl. Phys. Lett. 111 092403 [39] Hanneken C, Kubetzka A, von Bergmann K and Wiesendanger R 2016 New J. Phys. 18 055009 [40] Müller J and Rosch A 2015 Phys. Rev. B 91 054410 [41] Bian B, Chen G, Zheng Q, Du J, Lu H, Liu J P, Hu Y and Zhang Z 2018 Small 14 1801184 [42] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 [43] Vousden M, Albert M, Beg M, Bisotti M A, Carey R, Chernyshenko D, Cortés-Ortuño D, Wang W, Hovorka O, Marrows C H and Fangohr H 2016 Appl. Phys. Lett. 108 132406 [44] Beg M, Carey R, Wang W, Cortés-Ortuño D, Vousden M, Bisotti M A, Albert M, Chernyshenko D, Hovorka O, Stamps R L and Fangohr H 2015 Sci. Rep. 5 17137 [45] Pauling L and Soldate A M 1948 Acta Cryst. 1 212 [46] Richardson M 1967 Acta Chem. Scand. 21 2305 [47] Yamada H, Terao K, Ohta H and Kulatov E 2003 Physica B 329-333 1131 [48] Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Böni P, Lamago D, Eckerlebe H and Pranzas K 2005 Phys. Rev. B 72 134420 [49] Lebech B, Bernhard J and Freltoft T 1989 J. Phys.: Condens. Matter 1 6105 [50] Hamrle J, Gaier O, Min S G, Hillebrands B, Sakuraba Y and Ando Y 2009 J. Phys. D: Appl. Phys. 42 084005 [51] D'Albuquerque e Castro J, Altbir D, Retamal J C and Vargas P 2002 Phys. Rev. Lett. 88 237202 [52] Vargas P, Altbir D and d'Albuquerque e Castro J 2006 Phys. Rev. B 73 092417 [53] Heim B, R?nnow T F, Isakov S V and Troyer M 2015 Science 348 215 [54] Hu Y, Chi X, Li X, Liu Y and Du A 2017 Sci. Rep. 7 16079 [55] Chi X and Hu Y 2018 Acta Phys. Sin. 67 137502 (in Chinese) [56] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797 [57] Kovrizhin D L, Douc?ot B and Moessner R 2013 Phys. Rev. Lett. 110 186802 [58] Tanigaki T, Shibata K, Kanazawa N, Yu X, Aizawa S, Onose Y, Park H S, Shindo D and Tokura Y 2015 Nano Lett. 15 5438 [59] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501 [60] Moon K W, Yoon J, Kim C and Hwang C 2017 Phys. Rev. Appl. 12 064054 [61] Kuchkin V M and Kiselev N S 2020 Phys. Rev. B 101 064408 [62] Garanin D A, Chudnovsky E M, Zhang S and Zhang X 2020 J. Magn. Magn. Mater. 493 165724 [63] Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C and Rosch A 2013 Science 340 1076 [64] Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y and Kagawa F 2015 Nat. Phys. 12 62 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|